首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
空间失重引起的骨代谢调节失衡是航天员遭受的最严重的危害之一.骨代谢失衡还有可能影响机体的糖脂代谢平衡.本研究利用恒河猴头低位卧床模拟失重效应实验方法,分析头低位卧床过程中恒河猴血清中骨代谢、糖脂代谢指标变化情况及其相关性.卧床组恒河猴血清中BAP在头低位卧床实验开始7天便出现了显著下降(P<0.05),血清胰岛素、高密度脂肪酸含量在7天显著下降并一直维持在较低水平,血糖含量在7天时显著下降,但在21天时明显回升.分析发现,骨钙素与血糖、皮质醇、高密度脂肪酸含量间均存在相关性,这表明头低位卧床模拟失重效应实验中骨与糖脂代谢之间存在相互调控.   相似文献   

2.
为研究长期禁食过程中大鼠尿酸代谢的变化及其潜在的调控机制,以Sprague-Dawley(SD)大鼠为动物模型,通过病理组织切片、生化检测、荧光定量PCR(qRT-PCR)以及蛋白免疫印迹(Western blotting)等方法分析不同禁食时间(1,2,3,5,7天)大鼠尿酸水平及其代谢相关基因和蛋白的表达变化。结果表明,长期禁食未对大鼠肾脏组织产生明显的损伤,引起了血尿酸水平上升、尿尿酸水平波动性变化和血液尿酸酶活性升高;随着禁食时间的延长,主要尿酸转运蛋白的mRNA和蛋白表达水平逐渐上调。长期禁食过程中大鼠尿酸代谢变化可能与尿酸转运蛋白及尿酸酶活性有关。  相似文献   

3.
本研究结果表明,大鼠在声级为85dB(A)噪声环境下悬吊(HDT-30°)10昼夜后,淋巴细胞转化率及白细胞介素2(IL2)明显降低,血浆皮质酮含量显著升高,下丘脑内多巴胺(DA)和去甲肾上腺素(NA)含量呈升高趋势,表明机体处于应激状态.单纯85dB(A)噪声组除多巴胺及T淋巴细胞增殖反应外上述指标也有同样的变化规律,但没有复台因素组明显.本文出现的神经-内分泌-免疫系统功能失调可能是航天员易患感染性疾病的原因之一.  相似文献   

4.
微重力作为典型的空间环境因素,对植物生长发育的影响机制是空间生命科学的研究热点。微重力环境直接或间接影响植物代谢,并引起许多生理适应。 随着系统生物学的发展,代谢网络模型使微重力环境下的植物代谢建模成为可能。采用流平衡分析方法对模式植物拟南芥不同组织的代谢网络进行分析,研究微重力对拟南芥生长发育的影响机制。通过比较空间与地面条件下拟南芥的生物质产量,发现空间条件下拟南芥黄化幼苗、幼苗、芽、根、下胚轴的生物量分别下降了33.00%,51.52%,6.89%,12.53%,11.70%,与空间环境下拟南芥的长势变化趋势一致。代谢通路富集分析发现,微重力使得拟南芥的碳固定等通路下调,而磷酸戊糖途径上调,初步解析了微重力对拟南芥生长发育的影响机制,也验证了流平衡方法用于微重力生物学效应研究中的可行性。   相似文献   

5.
统计第23个太阳活动周内中等及以上强度(Dstmin<-50nT)的磁暴事件,线性拟合分析磁暴主相DDstmin和达到DDstmin前一个表征太阳极紫外辐射强度的F10.7之间的相关性.结果表明:随着太阳极紫外辐射增强,DDstmin<-50nT的磁暴出现的总数增多,在弱、中等和强太阳极紫外辐射条件下,其数量分别为56,84和85;随着太阳极紫外辐射增强,强磁暴(-200nT ≤ Dstmin<-100nT)和大磁暴(Dstmin<-200nT)发生的数量和相对发生率呈增长趋势,尤其是大磁暴数目(1,4,12)和相对发生率(1.79%,4.76%,14.12%)明显呈增长趋势;大磁暴(|Dstmin|)与太阳极紫外辐射(F10.7)之间存在中度正相关关系,其相关系数为0.532,并且主要体现在大磁暴(|Dstmin|)与强太阳极紫外辐射(F10.7)之间的中度正相关性,其相关系数为0.582.大磁暴与强太阳极紫外辐射之间的相关性可为空间天气预报提供参考依据.   相似文献   

6.
为研究心率变异性(HRV)指标在管制员(ATC)疲劳检测中的适用性,搭建模拟管制实验平台,利用生理记录仪实时记录20名被试正常和疲劳状态下的心电(ECG)信号,并采集其主观疲劳度(卡罗林斯卡嗜睡量表)和操作绩效。利用偏相关分析选取与被试疲劳等级相关性高的心率变异性指标,并用于管制员疲劳检测的多元线性回归建模。分析结果表明:SDNN与被试的疲劳状态无相关性;LFnorm和HFnorm与疲劳程度呈弱相关;RR间期均值、LF/HF均与被试的疲劳度存在较强的相关性,二者结合建立的多元线性回归模型,拟合优度大于0.5,RR间期均值和LF/HF可作为检测管制员疲劳的有效指标。本文研究成果可为未来的管制员疲劳实时检测提供科学依据和实验支撑。   相似文献   

7.
随着用户任务需求的增多,现代直升机功能日趋复杂并且长期处于复杂的使用环境中,机上所装载的大量测试类设备的精度会逐渐下降,计量保障人员必须定期检查上述关键测试类机载设备的精度指标,保证其处于完好状态.基于长期的直升机设计工作实践,本文总结了现有直升机计量保障中存在的问题,在现有可计量性及可计量性设计相关研究的基础上,明确...  相似文献   

8.
自生增压液氢推进剂贮箱在轨滑行阶段将长期(数百秒)处于微重力环境下,其贮箱压力受多种因素影响.液氢低温推进剂接近饱和温度时,因传热等影响而极易产生相变,从而影响贮箱压力.通过建立贮箱三维CFD模型,研究了不同初始液氢推进剂温度对于贮箱压力和温度变化等的影响.计算结果表明,气液界面附近推进剂温度与当前气体压力下饱和温度之差(过冷度)越大,压力下降速率越大.随着气体压力下降,气枕温度降低,压力下降速率也逐渐减小,压力变化曲线趋于平缓.在初始液体推进剂温度低于平衡温度的情况下,初始液体推进剂温度越高,平衡压力越高.   相似文献   

9.
运用人工神经网络,对板料基本成形性(单向拉伸、平面应变等基本试验的参数)与模拟成形性(拉深、杯突、扩孔、福井等模拟试验指标)二者的相关性进行了研究.在大量试验数据和反向传播算法的基础上,建立了描述相关性的BP网络模型.通过该模型,对已知基本成形性参数的板料的模拟成形性指标进行了计算机预测,预测结果与试验结果比较接近.本文的研究方法和结果表明,人工神经网络是研究板料的模拟成形性的一条有效途径  相似文献   

10.
三维回转器回旋条件下拟南芥种子发育分析   总被引:1,自引:1,他引:0  
向重力性反应是植物适应地球重力环境的一个重要生理过程, 是植物正常生长发育不可缺少的反应机制, 但是, 微重力是否影响植物种子发育至今尚无一致性结论. 本文研究了三维回转器回旋模拟微重力对拟南芥种子发育(胚胎发育与代谢活动)的影响. 研究结果表明, 三维回转条件下, 拟南芥果荚出现不规则弯曲或扭曲形态, 形成的种子中可溶性糖和淀粉含量明显增加, 盐溶性贮藏蛋白质含量显著降低而碱溶性蛋白质含量显著升高, 球形胚时期的种子对三维回转处理最为敏感. 对球形胚时期的植株进行短期的三维回转处理可抑制胚柄细胞的分裂和伸长, 而胚柄伸长受阻可能会影响到营养物质向胚胎中输送, 进而导致部分胚胎败育. 对种子干燥脱水阶段的植株进行三维回转处理不影响胚胎的发育, 但会导致种子贮藏蛋白质含量下降.   相似文献   

11.
12.
The purpose of this study is to reveal the effect of chronic hypergravity exposure on the bone formation and the bone metabolism when mammals produce offspring in a 2 G environment. We measured the length and width of the thighbone, the length of the pelvis, the width of the pelvic cavity and the width of the fourth cervical vertebra on the second (F2) and the third (F3) generation mice bred in a 2 G environment every ten days from 20 days old to 60 days old in an experiment on bone formation. In an experiment on bone metabolism, we measured calcium and phosphorus in the bones of the F3 in the 2 G group. Ratios of the thighbone length, pelvis length, pelvic cavity width, and fourth cervical vertebra width versus the body length were calculated. These ratios were higher in the 2 G group than the control group during all measuring periods. Calcium and phosphorus concentrations in the thighbone and the lumbar vertebra were lower in the 2 G group than in the control group. However, the calcium and phosphorus concentrations in the cervical vertebrae of the 2G group were higher. These results suggest that the influence of gravity load may vary in the bones.  相似文献   

13.
Parathyroid Hormone-related Protein (PTHrP) has been shown to be essential for the development and homeostatic regulation of lung and bone. Since both lung and bone structure and function are affected by microgravity, we hypothesized that 0 x g down-regulates PTHrP signaling. To test this hypothesis, we suspended lung and bone cells in the simulated microgravity environment of a Rotating Wall Vessel Bioreactor, which simulates microgravity, for up to 72 hours. During the first 8 hours of exposure to simulated 0 x g, PTHrP expression fell precipitously, decreasing by 80-90%; during the subsequent 64 hours, PTHrP expression remained at this newly established level of expression. PTHrP production decreased from 12 pg/ml/hour to 1 pg/ml/hour in culture medium from microgravity-exposed cells. The cells were then recultured at unit gravity for 24 hours, and PTHrP expression and production returned to normal levels. Based on these findings, we have obtained bones from rats flown in space for 2 weeks (Mission STS-58, SL-2). Analysis of PTHrP expression by femurs and tibias from these animals (n=5) revealed that PTHrP expression was 60% lower than in bones from control ground-based rats. Interestingly, there were no differences in PTHrP expression by parietal bone from space-exposed versus ground-based animals, indicating that the effect of weightlessness on PTHrP expression is due to the unweighting of weight-bearing bones. This finding is consistent with other studies of microgravity-induced osteoporosis. The loss of the PTHrP signaling mechanism may be corrected using chemical agents that up-regulate this pathway. In conclusion, PTHrP represents a stretch-sensitive paracrine signaling mechanism that may sense gravity.  相似文献   

14.
An evaluation of the hydromorphological condition of the Mahananda-Balason River system of the sub-Himalayan foothills, West Bengal, India was attempted using a multiparameter-based Hydromorphological Quality Index (HQI). After segmenting these rivers based on continuity, bed material and channel planform, a total of 18 indicators, divided into 3 subgroups Continuity (C), Planform (P), and Floodplain Morphology (FM), were quantified reach-wise and scaled upon the level of alteration (1 for highly altered and 5 for no alteration). The derived overall HQI (3.6) exhibited a moderate hydromorphological quality of the system, however, significant differences between the HQIs of confined and unconfined reaches were witnessed. Students ‘t-test and Multiple Correspondence Analysis both portrayed vast dissimilarities among the confined and unconfined reaches and the clustering was depending on their confinement. The deviations measured from the system’s mean and least altered conditions portrayed that the confined reaches with lesser human interventions were in comparatively more pristine hydromorphological conditions. Conversely, unconfined reaches showed moderate to very poor hydromorphological conditions chiefly due to intense human-induced alterations regarding urbanization, embanking and sediment extraction. Restorations on these aspects should initiate with immediate effect to avoid a shortage of riverine resources such as fluvial sediment, fish and groundwater. Overall, this methodology was found suitable for continuous monitoring of the river systems along with the precise identification of areas and aspects to be restored for upgrading the hydromorphological quality. More testing of this methodology would eventually help in validating the hydromorphological quality assessment protocol for Indian rivers.  相似文献   

15.
Microgravity and bone cell mechanosensitivity.   总被引:5,自引:0,他引:5  
The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions, and that this abnormal mechanosensation contributes to disturbed bone metabolism observed in astronauts. In our current project for the International Space Station, we wish to test this hypothesis experimentally using an in vitro model. The specific aim of our research project is to test whether near weightlessness decreases the sensitivity of bone cells for mechanical stress through a decrease in early signaling molecules (NO, PGs) that are involved in the mechanical loading-induced osteogenic response. Bone cells are cultured with or without gravity prior to and during mechanical loading, using our modified in vitro oscillating fluid flow apparatus. In this "FlowSpace" project we are developing a cell culture module that is used to provide further insight in the mechanism of mechanotransduction in bone.  相似文献   

16.
太空环境对肿瘤细胞生理特性的影响   总被引:1,自引:1,他引:1  
将3种肿瘤细胞搭载于“神舟4号”的卫星返回舱内,经过7天太空飞行,回收后对存活细胞进行单克隆化,观察细胞形态,并测定了细胞周期、黏附力及细胞因子表达.结果显示,经太空飞行,小鼠黑色素瘤B16细胞的周期发生改变,G1期细胞明显增多(p<0.05),并表现多种细胞形态;人肺鳞癌细胞L78对血管内皮细胞黏附力明显减弱,但经传代培养其黏附力恢复且超过对照组细胞;Caski细胞IL-2、IL-8、TNF和TGF的表达均明显增加,而L78细胞上述4种细胞因子的表达均显著下降.结论,太空环境可影响肿瘤细胞的某些生理特性,但可否影响肿瘤细胞的免疫原性,仍需做进一步的实验.  相似文献   

17.
The effects of gravity on bone metabolism are unclear, and little has been reported about the effects of hypergravity on the mature skeleton. Since low gravity has been shown to decrease bone volume, we hypothesized that hypergravity increases bone volume. To clarify this hypothesis, adult female rats were ovariectomized and exposed to hypergravity (2.9G) using a centrifugation system. The rats were killed 28 days after the start of loading, and the distal femoral metaphysis of the rats was studied. Bone architecture was assessed by micro-computed tomography (micro-CT) and bone mineral density was measured using peripheral quantitative CT (pQCT). Hypergravity increased the trabecular bone volume of ovariectomized rats. Histomorphometric analyses revealed that hypergravity suppressed both bone formation and resorption and increased bone volume in ovariectomized rats.  相似文献   

18.
The responses of endocrine system to the exposure to stress-work load and hormonal changes during oral glucose tolerance tests were studied in the Slovak astronaut before (three weeks before flight), during (on the 4th and the 6th days of space flight), and after space flight (1-3 days and 15-17 days after space flight) on board of space station MIR. Blood samples during the tests were collected via cannula inserted into cubital vein, centrifuged in the special appliance Plasma-03, frozen in Kryogem-03, and at the end of the 8-day space flight transferred to Earth in special container for hormonal analysis. Preflight workload produced an increase of plasma norepinephrine and a moderate elevation of epinephrine levels. Plasma levels of insulin, growth hormone, prolactin and cortisol were not markedly changed immediately or 10 min after the end of work load. The higher increases of plasma growth hormone, prolactin and catecholamine levels were noted after workload during space flight as compared to preflight response. The higher plasma glucose and insulin levels were noted during the oral glucose tolerance test in space flight and also in the post flight period. Plasma epinephrine levels were slightly decreasing during glucose tolerance test; however, plasma norepinephrine levels were not changed. The similar patterns of catecholamine levels during glucose tolerance test were found when compared the preflight, in-flight and post flight values. These data demonstrate the changes of the dynamic responses of endocrine system to stress-work and metabolic loads during space flight in human subject.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号