首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
贮箱内低温推进剂汽化过程的CFD数值仿真   总被引:3,自引:2,他引:1  
为研究贮箱内低温推进剂相变对推进剂温度和贮箱压力的影响,对贮箱内的传热传质过程进行了仿真.仿真涉及的物理过程包括贮箱与外界环境的换热、推进剂的自然对流、推进剂与贮箱内壁面的换热以及低温推进剂的相变过程等.根据热力学平衡原理建立了低温推进剂相变模型,使用CFD(Computational Fluid Dynamic)方法对处于地面常压停放状态的液氢贮箱进行了450 s的仿真.研究表明随着贮箱壁面传热过程的稳定,推进剂的温度分布、流动状态以及相变情况会趋于稳定;通过仿真获得了推进剂单位时间的汽化量;影响相变的主要因素是贮箱壁面漏热以及推进剂自身的对流运动.  相似文献   

2.
针对某火箭三子级剩余推进剂的汽化过程,建立了一个零维的数学物理模型.在给定太阳辐 射角的工况下,对贮箱中低温液体推进剂汽化时,贮箱内气体温度和压力变化、贮箱内质量 变化、进入贮箱的外界热流的变化及贮箱排放推力的变化等进行了数值计算,并对贮箱保险 活门排放推力对火箭在轨速度的极限影响作了简单分析.计算结果可进一步用于该火箭三子 级钝化技术的研究.  相似文献   

3.
<正>一、问题的提出火箭推进剂贮箱增压系统是液体火箭上不可缺少的一个系统,增压系统保证的推进剂贮箱压力值直接关系到液体发动机工作的成败,攸关重要。然而要在地面靠模拟试验确定贮箱压力值,不仅耗资太大,并且边界条件复杂,模拟困难。因此,增压压力的理论计算就显得十分重要了。增压系统理论计算的要点是根据能量守恒原理及气体状态方程式,对进入贮箱的能量与输出的能量进行平衡,从而计算出推进剂贮箱内的增压气体压力Px。以往的增压计算,其基本公式均采用传统的方程式:  相似文献   

4.
为研究低温推进剂的常压停放过程,设计了可视化液氮贮箱实验系统。实验中研究充填率和环境温度对液氮汽化量的影响,并测量贮箱内流体和贮箱外壁面的温度随时间和位置的变化。实验得出贮箱常压停放过程,相变主要在壁面和气液界面产生,并且气枕区存在温度分层,距出口位置越近温度越高;而液体区温度基本一致,处于饱和状态。贮箱外壁面在轴向的温度分布显著不同,处于液体区壁面温度低。运用分子动力学推导出的Hertz-Knudsen公式作为气液相变的传热传质源项,并据实验测得温度边界条件,采用混合物模型对贮箱常压停放状态进行30 min的数值仿真。仿真得到结果显示体积汽化速率与实验数据的偏差在5%以内,液体区的温度仿真与实验的偏差在0.15 K左右。   相似文献   

5.
差动活塞式燃气自增压系统参数设计方法   总被引:3,自引:0,他引:3  
针对基于单组元肼类物质为工质的液体姿轨控发动机差动活塞式燃气自增压系统,分析了系统的工作原理,提出了系统的参数设计方法,建立了系统的参数设计流程,给出了系统的起动压力计算模型和自锁状态计算方法,并进行了实例研究。结果表明:系统最低起动压力与压力放大贮箱气体腔初始体积、活塞摩擦力和推进剂贮箱初始气垫体积直接相关;系统自锁后,推进剂贮箱压力的设计状态受推进剂贮箱所允许的最大压力上偏差和流量调节器与推进剂贮箱间的压降所约束;推进剂贮箱的工作压力范围是可以根据需要通过燃气自增压系统的设计来保证的。  相似文献   

6.
介绍了气体注入压力激励方法测量卫星液体推进剂剩余量地面模拟试验;给出了包括温度、压力变化特性,采样数据选择,试验结果等方面的详细情况;常规模型模拟测量结果表明,可以实现不确定度小于贮箱总体积1.0%的高精度测量。  相似文献   

7.
为了预测航天器低温推进剂在轨工作时受热后的状态变化,采用二维轴对称Volume of Fluid(VOF)气液两相流计算流体力学模型,同时选择Lee提出的气液相变模型.由于模拟试验采用低温液氮贮箱,因此本文采用低温液氮贮箱为数值仿真对象.微重力情况下,贮箱内气枕区的压力和压力上升率均低于地面状况,重力水平越低,压力和压力上升率越小,并且气体形成的气枕区位置和形状因表面张力大小随温度不同而动态变化,液体区间的温差也随重力水平的降低而增大.  相似文献   

8.
大容量推进剂贮箱液体晃动性能试验   总被引:1,自引:0,他引:1  
对某种内带推进剂管理装置(PMD)的大容量推进剂贮箱内液体晃动性能进行试验.开展不同充液比工况下空壳贮箱液体晃动试验,分析比较晃动试验结果与采用等效动力学模型的液体晃动理论计算结果,两者结果一致吻合,试验系统可靠性和理论模型的正确性得到良好验证.然后开展了不同充液比工况下内带PMD贮箱液体晃动试验,试验结果表明贮箱内液体晃动性能受内部PMD结构影响明显.该试验研究结果为运载火箭和卫星的姿态和轨道控制系统的设计优化提供重要参考和数据支撑.  相似文献   

9.
板式表面张力贮箱内推进剂重定位对确定推进剂分布情况、研究晃动影响、提高控制精度等具有重要意义.为研究板式贮箱内推进剂重定位的规律,对微重力下板式贮箱内液体重定位问题进行数值仿真.计算时使用三维非定常两相流动流体(VOF)模型,对某一板式贮箱寿命末期在不同微重力加速度情况下各种重定位过程进行数值仿真,得到各种工况下重定位的全过程,以及定位后推进剂的分布情况.数值仿真结果为板式贮箱的设计提供有利依据.  相似文献   

10.
利用AMESim+AMESet建立了丁烷微推进系统一维仿真模型,该模型包含:考虑丁烷相变的自增压贮箱、稳压气容、PID控制的电加热推力器等组件.研究自增压贮箱、电磁阀、气容和推力器的静态工作特性,分析气容体积和推力器加热功率以及推力器扩张比对系统工作特性的影响,对丁烷推进系统的动态响应特性进行探讨.结果显示,自增压贮箱内流体在温控系统的控制下能够实现稳定的压力,在变目标推力时系统的响应较快,增加气容体积有利于提高系统工作稳定性.当前推进系统在稳定工作时的推力器最大质量流量为0.079 g/s,最大推力为102 mN.贮箱自增压过程中PID温控对贮箱内工质压力具有重要影响.无温控时,推进剂的持续流入和蒸发造成贮箱液体丁烷排空时的气容压力下降了19.5%;施加PID温度控制后,气容内工质压力稳定在0.302 MPa,工质温度会快速稳定在293.15 K附近.较大的气容体积能够让推力输出更稳定.通过电加热推力器腔体内的丁烷气体可以有效提高推力.推力器加热功率从0 W增加到30 W时,推力从92 mN增加到114 mN,比冲效率从76.2%增加到94.3%.  相似文献   

11.
低温推进剂由于其比冲高、无毒无污染,被认为是进入空间及轨道转移最经济、效率最高的化学推进剂,也是未来人类月球探测、火星探测以及更远距离深空探测的首选推进剂。热力学排气技术是解决低温推进剂长期在轨应用蒸发量控制问题的一项关键技术。针对应用于低温贮箱的热力学排气系统(TVS)搭建了地面原理实验平台,采用制冷剂R123为工质,开展了增压、混合喷射降压以及节流制冷3种不同工作模式下的实验研究,分析了不同阶段箱体压力及内部流体问题变化情况,实验验证了热力学排气系统的压力控制效果,与直接排气相比,热力学排气可节省41%的排气损失,该结果可为低温推进剂在轨贮存热力学排气技术的发展提供借鉴和参考。  相似文献   

12.
液氢是一种常用的沸点低、易蒸发的空间低温推进剂.空间微重力环境中浮力对流被极大减弱甚至完全抑制,当推进剂储罐壁面存在局部漏热时,储罐内部气液两相流会出现环绕漏热源的温度分层现象,引起局部过热沸腾,导致储罐内部压力急剧增大,危害系统结构安全.利用低温射流抑制温度分层现象是一种有效手段.低温流体通过设置在储罐内部的射流喷嘴与储罐内部的流体混合,消减局部高温,实现温度的均匀化.本文采用全充满的二维缩比储罐模型,对微重力条件下液氢储罐内局部漏热引起的温度分层现象进行数值模拟,分析低温射流条件对于消除微重力条件下液氢储罐内部温度分层效果的影响.   相似文献   

13.
约束通道对电弧推力器的性能有着重要的影响,文章采用基于局域热力学模型(LTE)的数值模拟方法对中等功率电弧推力器内等离子体流动进行了数值模拟,考察了电流、入口压力、约束通道尺寸及不同推进剂对约束通道内等离子体流动的影响,分析了约束通道内非均匀流动现象,最后对推力器的性能、效率等进行了讨论。计算结果表明,随着电流的增加电弧高温区变粗变长,随着入口压强的增加电弧高温区半径减小而长度增加,随着约束通道半径的减小电弧高温区变得细长,随着约束通道长度的增加高温区的长度增长而半径无明显变化,氢气的高温区明显小于氮气和氩气;约束通道内只有小部分气体通过高温区被电离,大部分气体沿着壁面附近的低温区流动;约束通道内焦耳热约占总焦耳热的60%~80%,主要受约束通道长度影响。  相似文献   

14.
液体火箭发动机试验中,流量测量的准确度至关重要。不同于常温流量测量,低温推进剂的流量测量有其特殊性。介绍了称重法低温介质流量校验原理、方法及方案,对流入法排出气体及流出法增压气体流量简略计算公式进行了推导;针对低温容器气枕换热传质特点,对气枕平均温度的一致性进行了讨论。得出了流入法排出气体流量一致性较好、采用流入法可以使低温流量计检定准确度更高的结论。  相似文献   

15.
液体火箭发动机试验中,流量测量的准确度至关重要。不同于常温流量测量,低温推进剂的流量测量有其特殊性。介绍了称重法低温介质流量校验原理、方法及方案,对流入法排出气体及流出法增压气体流量简略计算公式进行了推导;针对低温容器气枕换热传质特点,对气枕平均温度的一致性进行了讨论。得出了流入法排出气体流量一致性较好、采用流入法可以使低温流量计检定准确度更高的结论。  相似文献   

16.
To properly estimate orbital lifetimes and predict the maneuverability of spacecraft, the remaining liquid propellant mass must be accurately known at every moment of a space mission. This paper studies the Compression Mass Gauge (CMG) method to determine the mass of liquid contained in a tank in a low-gravity environment with high accuracy. CMG is a thermodynamic method used to determine the quantity of liquid by measuring the gas pressure change when the tank volume changes, and has been previously theoretically and experimentally studied by researchers. The primary objective of this investigation is to explore the effects of attitude disturbance and the spacecraft thermal environment on the accuracy of the method. A ground test system, consisting of several test apparatuses, was fabricated and described as part of this study. The test results and analyses indicate that the CMG performs well and has an accuracy of ±1%. Additionally, demonstrations were performed to show that measurement errors do not increase drastically or exceed ±1% when the test system is vibrated to simulate the tank being perturbed as a result of an attitude disturbance. Liquid sloshing resonance was found to have a significant effect on the gauging accuracy. Measurements in a real thermal environment in which heat transfers into and out of the propellant tank were also conducted. The results show that the gauging accuracy is acceptable for normal liquid propellant. Furthermore, theoretical research shows that heat leakage has a significant influence on cryogenic propellant mass gauging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号