首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More than half a century after the discovery of Pi2 pulsations, Pi2 research is still vigorous and evolving. Especially in the last decade, new results have provided supporting evidence for some Pi2 models, challenged earlier interpretations, and led to entirely new models. We have gone beyond the inner magnetosphere and have explored the outer magnetosphere, where Pi2 pulsations have been observed in unexpected places. The new Pi2 models cover virtually all magnetotail regions and their coupling, from the reconnection site via the lobes and plasma sheet to the ionosphere. In addition to understanding the Pi2 phenomenon in itself, it has also been important to study Pi2 pulsations in their role as transient manifestations of the coupling between the magnetosphere and the ionosphere. The transient Pi2 is an integral part of the substorm phenomenon, especially during substorm onset. Key questions about the workings of magnetospheric substorms are still awaiting answers, and research on Pi2 pulsations can help with those answers. Furthermore, the role of Pi2 pulsations in association with other dynamic magnetospheric modes has been explored in the last decade. Thus, the application of Pi2 research has expanded over the years, assuring that Pi2 research will remain active in this decade and beyond. Here we review recent advances, which have given us a new understanding of Pi2 pulsations generated at various places in the magnetosphere during different magnetospheric modes. We review seven Pi2 models found in the literature and show how they are supported by observations from spacecraft and ground observatories as well as numerical simulations. The models have different degrees of maturity; while some enjoy wide acceptance, others are still speculative.  相似文献   

2.
In the 1973 Scientific Assembly, the International Association of Geomagnetism and Aeronomy proposed with Resolution No. 11 to settle two new classes of magnetic pulsations; Pc6 having a sinusoidal waveform with periods longer than 600 s and Pi3 having an irregular waveform with periods longer than 150 s. The present paper reviews the studies on these pulsations putting a stress on Pi3. the Pi3-type pulsations are further classified into Psc5, Psc6, Pip, Ps6 and another type. The pulsations Psc5 and Psc6 mean the damped-type pulsations associating with storm sudden commencement in the approximate period range from 150 to 600 s and longer than 600 s, respectively, while Pip and Ps6 are the quasi-sinusoidal pulsations associating with magnetospheric substorm in the appropriate period range from 100 to 400 s and from 5 to 40 min, respectively. In the present review paper a stress is further layed on morphology and theory of the Ps6-type Pi3 pulsation. The following two-snake model is concluded to be plausible. A current system with in-flowing field-aligned current, westward ionospheric current, and out-flowing field-aligned current expands toward both the dawn- and the dusk-sectors with the progress of magnetospheric substorm. Thus Ps6 is regarded to be due to a magnetic effect of a meandering of the current system during the expansion, which is compared with the meandering of two snakes along the auroral oval from the midnight point toward both the east and the west, respectively.  相似文献   

3.
We present theory of long period (pc 3 to pc 5) magnetic pulsations. It consists of two parts; one (we call type A) deals with a resonant Alfvén wave excitation at a local field line by a monochromatic wave generated at the magnetopause, and the other (we call type B) deals with an excitation of a surface eigenmode by an externally applied impulse at a location with a rapid spatial change of plasma parameter(s).For the type A pulsations, the theory gives the frequency, the sense and the ellipticity of the polarization and the orientation angle of the major axis as a function of the magnetospheric parameters. In particular, it is shown that the orientation angle of the major axis of the polarization ellipse is a sensitive function of the direction of the wave propagation in longitude and the change of the number density and the magnetic flux density in the radial direction, hence it can be used as an important diagnostic parameter.In the type B pulsations, the theory gives the excitation frequency and the damping rate of the pulsations using the derived surface eigenmode. Example of an application to the observed magnetic field oscillations at the plasmapause is presented in which the observed frequency and the damping rate are used to estimate the plasmapause density and its radial density gradient.  相似文献   

4.
Morphology and physics of short-period magnetic pulsations   总被引:5,自引:0,他引:5  
This review is devoted to the main problems of experimental and theoretical investigations of geoelectromagnetic waves in the frequency range from 0.1 to 5 Hz. These waves constitute the short-period subclass of so-called geomagnetic pulsations. The short-period pulsations are represented by Pc1, Pc2, Pi1, Ipdp types and some subclassifications. The understanding of the pulsation mechanisms provides an insight into the structure and dynamics of the Earth's magnetosphere. We focus our attention on Pc1 pearl pulsations and on the classical (evening) Ipdp, for which basic physical concepts have been established. Other types and varieties are outlined also, but in less detail. In these cases, the physical mechanism is not always clear (as, for example, in the case of morning Ipdp), and/or the morphology is still to be determined carefully (Pc2 and discrete signals in polar cusps as typical examples).Short-period pulsations are a spontaneous, sporadic phenomenon which undergo a certain evolution in the course of a magnetic storm. We consider the storm-time variation as a natural background, and we use this background to collect the information about the pulsations in an orderly manner. At the same time, together with the transient storm-time variation of pulsation activity, quasi-periodic variations take place, which are connected with the Earth's and Sun's rotation, Earth's orbital motion and solar cycle activity. The study of these regular variations allows us to have a new approach to the mechanisms of excitation and propagation of short-period geomagnetic pulsations.  相似文献   

5.
The relationships of type Pi (broadband) pulsations to various other substorm-related phenomena are reviewed. Several of the more popular mechanisms for the origin of Pi activity are discussed in the light of the observations. There is only one mechanism in sight that tentatively accounts for observed characteristics of Pi 1–2 activity at auroral oval and polar cap latitudes and that is the three-dimensional current loop mechanism. If two or more mechanisms are involved in the generation of Pi noise, then it is possible that the garden-hose overstability and/or a drift Alfvén wave mechanism operating in the plasma sheet contribute to the observed pulsations.The common feature of all Pi 1–2 events is not the presence of temporal precipitation pulsations but the presence of an E-region, suggesting that enhanced conductivity and E-region currents are required. Pi activity appears to be closely related to unsteady convection in progress. Pi data promise to provide useful information on convection and field-aligned and ionospheric currents.  相似文献   

6.
Experimental data on velocity, longitudinal component of the surface friction vector, length of the separated region, and distribution of static pressure in a separated turbulent channel flow with periodic pulsations of gas flowrate are presented. The dependence of the separated region parameters on the frequency of superimposed flowrate pulsations and natural acoustic gas vibrations in the channel is established.  相似文献   

7.
The current state of research involving manifestations of nonlinearity in geomagnetic pulsations is reviewed. Traditionally, the attention of researchers was focused on the effects of resonant interaction of geomagnetic pulsations with small groups of energetic particles, which actually means the study of the quasi-linear relaxation of radiation belt ions, the modulation of auroral electron fluxes, etc. The present review concentrates on the problem of the nonlinear effect influence of pulsations on the backgroud (cold) plasma and on the geomagnetic field. This kind of interaction results in a significant modification of the plasma distribution in the magnetosphere. Self-consistent wave structures—solitons and vortices may occur as well. Such nonlinear effects contribute to physics of geomagnetic pulsations and are also of fundamental importance for general physics. Another set of more narrow problems considered in the review, is related to phenomenological modeling of fluctuational and critical phenomena in the magnetosphere. The essence of our approach is to present the magnetosphere as a black box, whose properties should be determined by the statistical characteristics of its output signals. This approach to phenomenology can be a useful supplement to the methods of microscopic modeling aimed at detecting nonlinear manifestations of geomagnetic pulsations.  相似文献   

8.
Geomagnetic pulsations   总被引:1,自引:0,他引:1  
Conclusion In writing this review paper the author has been aware that although the present international classification on geomagnetic pulsations (see Table I) had been really useful for several years since the Berkeley Meeting, it seems unsuitable for the up-to-date pulsation study. This is mainly due to the fact that it depends only on the period and waveform of the pulsations. For example, (1) occurrence of PP type of Pc1 even in the international Pc3 range (Heacock, 1966), (2) PP and CE getting mixed in a common period band (cf. 2.7), (3) similar mixing tendency of Pc3 with Pc4 (cf. 3.3 or Figure 21), (4) subtypes of Pi pulsations having common period ranges but different source mechanisms, (5) existence of various types of pulsations which can be classified neither to Pc nor to Pi (cf. Section 6), and so on. Hence the author feels that a new pulsation classification based on physical image on the occurrence models is really needed now.According to the international definition which has a period range of pulsations from 0.2 (5 Hz) to 600 sec, a part of the following electromagnetic field fluctuations called ELF emissions and ELF whistlers should belong to geomagnetic pulsations. ELF emissions are at times observed near 4 Hz and 9 Hz. They are so termed because of the difference between these frequencies and the Schumann resonance frequencies of 8 and 14 Hz (Yanagihara and Shimizu, 1969; Polk, 1969). Another type, ELF whistlers, exhibit either rising, falling or fluctuating tones from about 2 Hz to probably a few tens of Hz (Duffus, Nasmyth et al., 1958; Yamashita, 1967; Glangeaud, 1967; Yanagihara and Shimizu, 1969). In this review paper, however, both ELF emissions and whistlers have not been reviewed, since most of these seem to be out of the international frequency range so far as present observational knowledge is concerned. Some of the Pc6 and Dp2, involved in the international period range of pulsations, have also not been commented on, but the reader is advised to refer to Herron (1967) and Nishida (1968), respectively, for more detail.It has been frequently pointed out in this paper that latitudinal dependence of pulsation amplitude is one of the most important clues for seeking the model of excitation and propagation of HM and EM waves, but that this dependence has not been precisely obtained so far owing to the difference in geomagnetic longitude of the pulsation stations (for example, see Figure 40). Cooperative observations based on standardized magnetometers are eagerly desired at stations which are densely arranged along the same magnetic meridian, even if the observation is temporal.As already reviewed, various conflicting models have been proposed for each type of pulsation. On the occurrence of pc's, for example, there are two main conflicting models. In the first model, Pc2, 3, and 4 (Troitskaya, 1967; Patel and Hastings, 1968; and others) or Pc3 and 4 (Radoski and Carovillano, 1966) are related to one and the same resonance system and the difference in the type of these pc's is attributed to an effect of geomagnetic activity on the size of this system. In the second model, Pc2, 3, 4 and 5 are related to three or four different resonant systems (Jacobs and Sinno, 1960b; Hirasawa and Nagata, 1966; Kato, Mori et al., 1968; and others). Most of the conflict among such models seems to be removable by combining more thorough theoretical studies and correct dynamic spectrum analyses of the data at the polar region, auroral zone, sub-auroral zone, and middle and low latitudes, for various geomagnetic disturbance conditions.  相似文献   

9.
The radial pulsations of very luminous, low-mass models (L/M 104, solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. We find that there are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars.  相似文献   

10.
容腔效应对压气机压力脉动影响的分析   总被引:1,自引:0,他引:1  
对2台压气机在不同排气容腔下进行对比试验,利用高频响动态压力传感器测取了压气机进口、出口和1级转子出口的壁面静压脉动。并采用时域和频域分析方法对不同出口容积下的压力脉动进行了分析,给出了压力脉动时频图、三维功率谱和自相关、互相关分析。  相似文献   

11.
Several automated optical telescopes have been setup at appropriate longitudes around the globe to study earthshine variations and asteroseismology. The first telescope has been setup at Teide Observatory, Tenerife, Spain in October 2004. The intensity of earthshine relates to the average of Earth’s albedo, and in turn relates to the global temperature of the Earth. A global network is necessary because each site can measure the earthshine reflected from only a part of the Earth. The network will also be used for asteroseismology study. It can measure photometric variations of pulsating stars. The long-term and continuous measurements allow the accurate determination of mode frequencies of stellar pulsations, which provides information on the properties of stellar interior.  相似文献   

12.
针对雾化气流脉动条件下乙醇喷雾旋流非稳态燃烧问题,开展了不同雾化流量下乙醇喷雾旋流火焰对雾化气流脉动响应特性的实验研究,揭示了不同脉动频率和脉宽时长下火焰长度和抬升高度的响应特性,获得了乙醇喷雾燃烧在雾化气流脉动条件下的火焰结构、温度分布等动态规律.结果表明:随着雾化流量增加,旋流火焰由附着演化为抬升;此外,雾化气流脉...  相似文献   

13.
采用高速摄像机拍摄了收缩管/扩张管型无阀压电微泵泵腔中气泡的变化,包括进入、移动、合并和分离等过程。同时,采用压阻式微型压力传感器测试无阀压电微泵泵腔的压力脉动。实验结果表明气泡进入泵腔之后,流体有效体积弹性模量和无阀微泵压力脉动幅值明显减少,气泡的进入使无阀微泵的工作性能大大降低,甚至导致微泵无法正常工作;而气泡移动、合并和分离对流体有效体积弹性模量和微泵的动态特性影响较小。  相似文献   

14.
The Cepheid-like pulsations of some of the R CrB stars should in principle make it possible to determine their masses and hence to place constraints on possible evolution scenarios. We briefly review the evidence for these pulsations and discuss the problem of how these low-mass, hydrogen-deficient carbon stars could have evolved to their present position in the H-R diagram. Linear and nonlinear pulsation calculations are reviewed. It is found that for these large luminosity to mass ratio (L/M) stars a region of pulsation instability extends considerably hotter than for normal high luminosity Cepheids. The envelopes of these models are so nonadiabatic that the identification of modes becomes very difficult since there is frequently no clearly defined nodal structure. For the most extreme L/M cases it is found that the models are unstable in the sense that they appear on the verge of ejecting the outer layers.  相似文献   

15.
In this paper, a decrease of turbulent pulsations of velocity in a boundary layer and the coefficient of friction drag for an accelerating flow on the perforated surface with blind damping cavities is experimentally found. We generalize the mathematical model of partial boundary layer laminarization [1], which is based on the experimental data [2, 3] obtained earlier on a decrease of the friction drag coefficient and deformation of average velocity profiles in the stabilized section of flow in the perforated tube with blind damping cavities.  相似文献   

16.
Fine structure of type IV radio solar bursts with a great variety and complexity often give much information in different ways and enable estimation of various coronal characteristics. In this work, we expose our new method for fine structure revealing and separation of two basic kinds of type IV fine structure, as fibers and pulsations. We also estimate frequency drift of fibers from dynamic spectra, clean from continuous background, with a prototype method using 2-D Fourier transform and we estimate periodicities of fibers as well as pulsations with continuous wavelet transform. Working with the last method we found periodicities close to 3 min umbral oscillations and 5 min global solar oscillations.  相似文献   

17.
A numerical study of the flow in an axisymmetric overexpanded thrust optimized contour nozzle is presented. The separation flow structures at different pressure ratios are investigated. The start-up process exhibits two different shock structures. For a range of pressure ratios, hysteresis phenomenon occurs between these two separation patterns. For a larger pressure ratio, where the principal separation point is always inside the nozzle, another phenomenon appears. This phenomenon results in an oscillatory longitudinal quasi periodic movement of the separation structure. The computed nozzle wall pressures show a correct agreement with the experimental measurements and the pulsations frequency of the oscillatory phenomenon is also well predicted.  相似文献   

18.
Experimental results of a study of pressure recovery in a planar diffuser under imposed pulsations of the air flowrate are presented. The data is obtained in a wide range of imposed pulsation frequencies. Features of distributions of the mean pressure and the pressure drop in the diffuser are described.  相似文献   

19.
Shear flow instabilities are an important aspect of hydrodynamic studies. The present review article discusses the role of an ambient magnetic field which both modifies the Kelvin-Helmholtz instability and may introduce new types of magnetohydrodynamic waves and instabilities. A brief overview of magnetospheric pulsations is presented with an emphasis on the long-period resonant Alfv??n waves associated with the high speed solar wind. The spatio-temporal evolution of magnetically modified shear flow instabilities in various space plasma structures is addressed. A distinction between convective and absolute instabilities is necessary for proper understanding of theory and correct interpretation of the observations. Finally, it is shown how incompressible Alfv??nic disturbances may become unstable in a compressible flow in the absence of any shear. An application to coronal loops is presented.  相似文献   

20.
The Hermean magnetosphere is likely to contain a number of wave phenomena. We briefly review what little is known so far about fields and waves around Mercury. We further discuss a number of possible phenomena, including ULF pulsations, acceleration-related radiation, bow shock waves, bremsstrahlung (or braking radiation), and synchrotron radiation. Finally, some predictions are made as to the likelihood that some of these types of wave emission exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号