首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More than half a century after the discovery of Pi2 pulsations, Pi2 research is still vigorous and evolving. Especially in the last decade, new results have provided supporting evidence for some Pi2 models, challenged earlier interpretations, and led to entirely new models. We have gone beyond the inner magnetosphere and have explored the outer magnetosphere, where Pi2 pulsations have been observed in unexpected places. The new Pi2 models cover virtually all magnetotail regions and their coupling, from the reconnection site via the lobes and plasma sheet to the ionosphere. In addition to understanding the Pi2 phenomenon in itself, it has also been important to study Pi2 pulsations in their role as transient manifestations of the coupling between the magnetosphere and the ionosphere. The transient Pi2 is an integral part of the substorm phenomenon, especially during substorm onset. Key questions about the workings of magnetospheric substorms are still awaiting answers, and research on Pi2 pulsations can help with those answers. Furthermore, the role of Pi2 pulsations in association with other dynamic magnetospheric modes has been explored in the last decade. Thus, the application of Pi2 research has expanded over the years, assuring that Pi2 research will remain active in this decade and beyond. Here we review recent advances, which have given us a new understanding of Pi2 pulsations generated at various places in the magnetosphere during different magnetospheric modes. We review seven Pi2 models found in the literature and show how they are supported by observations from spacecraft and ground observatories as well as numerical simulations. The models have different degrees of maturity; while some enjoy wide acceptance, others are still speculative.  相似文献   

2.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The recent development of several new observational techniques as well as of advanced computer simulation codes has contributed significantly to our understanding of dynamics of the three-dimensional current system during magnetospheric substorms. This paper attempts to review the main results of the last decade of research in such diverse fields as electric fields and currents in the high-latitude ionosphere and field-aligned currents and their relationship to the large-scale distribution of auroras and auroral precipitation. It also contains discussions on some efforts in synthesizing the vast amount of the observations to construct an empirical model which connects the ionospheric currents with field-aligned currents. While our understanding has been greatly improved during the last decade, there is much that is as yet unsettled. For example, we have reached only a first approximation model of the three-dimensional current system which is not inconsistent with integrated, ground-based and space observations of electric and magnetic fields. We have just begun to unfold the cause of the field-aligned currents both in the magnetosphere and ionosphere. Dynamical behaviour of the magnetosphere-ionosphere coupling relating to substorm variability can be an important topic during the coming years.On leave of absence from Kyoto Sangyo University, Kyoto 603, Japan.  相似文献   

4.
Ion demagnetization in the plasma sheet causes the formation of field-aligned current that can trigger a magnetosphere-ionosphere coupling feedback instability, which may play an important role in substorm and auroral arc generation. Since field-aligned currents close ionospheric currents, their magnitude is controlled by ionospheric conductivity. The cause of instability is the impact of increasing upward field-aligned currents on ionospheric conductivity, which in turn stimulates an increase in the field-aligned currents. When the magnitude of these currents becomes sufficiently large for the acceleration of precipitating electrons, a feedback mechanism becomes possible. Upward field-aligned currents increase the ionospheric conductivity that stimulates an explosion-like increase in field-aligned currents. It is believed that this instability may be related to substorm generation. Demagnetization of hot ions in the plasma sheet leads to the motion of magnetospheric electrons through a spatial gradient of ion population. Field-aligned currents, because of their effect on particle acceleration and the magnitude of ionospheric conductivity, can also lead to another type of instability associated with the breaking of the earthward convection flow into convection streams. The growth rate of this instability is maximum for structures with sizes less than the ion Larmor radius in the equatorial plane. This may lead to the formation of auroral arcs with widths of the order of 10 km. This instability is able to explain many features of auroral arcs, including their conjugacy in opposite hemispheres. However, it cannot explain very narrow (less than 1 km) arcs.  相似文献   

5.
The relationships of type Pi (broadband) pulsations to various other substorm-related phenomena are reviewed. Several of the more popular mechanisms for the origin of Pi activity are discussed in the light of the observations. There is only one mechanism in sight that tentatively accounts for observed characteristics of Pi 1–2 activity at auroral oval and polar cap latitudes and that is the three-dimensional current loop mechanism. If two or more mechanisms are involved in the generation of Pi noise, then it is possible that the garden-hose overstability and/or a drift Alfvén wave mechanism operating in the plasma sheet contribute to the observed pulsations.The common feature of all Pi 1–2 events is not the presence of temporal precipitation pulsations but the presence of an E-region, suggesting that enhanced conductivity and E-region currents are required. Pi activity appears to be closely related to unsteady convection in progress. Pi data promise to provide useful information on convection and field-aligned and ionospheric currents.  相似文献   

6.
Magnetic field data from a meridian chain of observatories and the recently developed computer codes constitute a powerful tool in studying substorm current systems in the polar region. In this paper, we summarize some of the results obtained from the IMS Alaska meridian chain of observatories. The basic data are the average daily magnetic field variations for 50 successive days (March 9–April 27, 28) which represent a moderately disturbed period. With the aid of the two computer codes, we obtained the distribution of the following quantities in the polar ionosphere in invariant-MLT coordinates: (1) the total ionospheric current; (2) the Pedersen current; (3) the Hall current; (4) the field-aligned currents; (5) the Pedersen-associated field-aligned currents; (6) the Hall-associated field-aligned currents; (7) the electric potential; (8) the Joule heat production rate; (9) the auroral particle energy injection rate; (10) the total energy dissipation rate. All these quantities are related to each other self-consistently at every point under the initial assumptions used in the computation. By using a model of the magnetosphere, the following quantities in the polar ionosphere are projected onto the equatorial plane and the Y — Z plane at X = -20 R E: (11) the Pedersen current counterpart; (12) the Hall current counterpart; (13) the electric potential; (14) the Pedersen-associated field-aligned currents; (15) the Hall-associated field-aligned currents. These distribution patterns serve as an important basis for studying the generation mechanisms of substorm current systems and the magnetosphere-ionosphere coupling process.  相似文献   

7.
The results of research of the morphology and physics of polar magnetic disturbances and their connection with three-dimensional magnetospheric currents are reviewed. Magnetic disturbance current systems are examined, also their relation to solar wind parameters and magnetic activity level and their seasonal dependence. On the basis of numerical model calculations it is shown that magnetospheric field-aligned currents observed by the TRIAD and ISIS-2 satellites are the main generation mechanism of high-latitude magnetic disturbances. Plasma pressure gradients are examined as a source of energy for driving field-aligned currents in the closed magnetosphere.  相似文献   

8.
Substorm timings and timescales: A new aspect   总被引:1,自引:0,他引:1  
Meng  Ching-I  Liou  Kan 《Space Science Reviews》2004,113(1-2):41-75
The magnetospheric substorm is a fundamental element of magnetospheric disturbances. After more than 40 years of intensive studies, various aspects of substorm morphology have been qualitatively established. Observations from the International Solar-Terrestrial Physics (ISTP) mission during the last decade have provided more detailed and complete pictures of substorms than before and, consequently, have provided new insights into substorm mechanisms. From the global auroral imaging it is shown that substorm onsets are locally confined; however, the effects of substorms involve a very large space at different times. Observations relying on in situ techniques can be misleading and can introduce confusion if not properly interpreted. On the other hand, remote sensing techniques such as global auroral imaging not only provide a robust means for studying substorm phenomenology but also yield relatively consistent results. This article reviews and summarizes a number of substorm studies conducted based primarily on global auroral images from NASA's Polar satellite, with a main focus on “quantitative” substorm morphology (i.e., onset timing, locations, energy input, and substorm timescales). These studies conclude that (1) auroral breakups are the most reliable substorm indicator, whereas other commonly used onset proxies may not always be associated with substorms and are subject to a propagation delay; (2) after breakup, the expanded auroral bulge can move either westward (60%) or eastward (40%); and (3) a typical substorm expansion phase lasts ~10 minutes and increases with increasing distances from the onset. A key conclusion from some recent studies seems to suggest that magnetotail reconnection, if it ever exists, is a consequence of substorm expansion onset. These findings provide constraints for substorm models and theories.  相似文献   

9.
The different types of magnetic pulsations occurring during magnetospheric substorms are analysed into the concept of polar substorms recently described in detail by Akasofu (1968). Special attention is thus paid, to the simultaneous occurrence of different types of micropulsations at different places around the earth, during the development of a substorm. Time lags between the appearance of micropulsations and other geophysical effects of the substorm are of fundamental importance in this respect. Relationships between the occurrence or spectral shape of micropulsations and the state of the magnetosphere, as determined by satellite measurements are also of interest. Recent theoretical studies about the origin of these micropulsations are reviewed: natural h.m. emissions are directly linked to the thermal plasma density, the high energetic particle fluxes and pitch angle distributions in the far magnetosphere (L 5–8). We can thus expect to be able to deduce some information about the changes of these quantities during substorms. New semi-quantitative work is reported, which tries to interpret the repetitive structure of SIP events in terms of thickness of the magnetospheric tail, and the frequency drift of IPDP's in terms of magnetospheric electric fields. The present knowledge about absorption and dispersion of hydromagnetic waves through the ionosphere or inside the submagneto-ionospheric guide is also stated, because not taking these effects into account could lead to misinterpretation of the data.  相似文献   

10.
Lui  A.T.Y. 《Space Science Reviews》2004,113(1-2):127-206
Space plasmas present intriguing and challenging puzzles to the space community. Energy accessible to excite instabilities exists in a variety of forms, particularly for the magnetospheric environment prior to substorm expansion onsets. A general consensus of the pre-expansion magnetosphere is the development of a thin current sheet in the near-Earth magnetosphere. This review starts with a short account of the two major substorm paradigms. Highlights of some observations pertaining to the consideration of potential plasma instabilities for substorm expansion are given. Since a common thread of these paradigms is the development of a thin current sheet, several efforts to model analytically a thin current sheet configuration are described. This leads to a review on the instability analyses of several prominent candidates for the physical process responsible for substorm expansion onset. The potential instabilities expounded in this review include the cross-field current, lower-hybrid-drift, drift kink/sausage, current driven Alfvénic, Kelvin-Helmholtz, tearing, and entropy anti-diffusion instabilities. Some recent results from plasma simulations relevant to the investigation of these plasma instabilities are shown. Although some of these instabilities are generally conceived to be excited in spatially localized regions in the magnetosphere, their potentials in yielding global consequences are also explored.  相似文献   

11.
Most substorm researchers assume substorms to be caused by a unique large-scale process. However, a critical evaluation of substorm observations indicates that a new paradigm is needed to understand the substorm phenomenon and the magnetospheric dynamics in general. It is proposed here that substorms involve a number of physical processes covering over a wide range of spatial and temporal scales. Potential candidates include the kinetic or shear ballooning instability, the Kelvin-Helmholtz instability, the cross-field current instability, the tearing instability, and magnetic reconnection. An observational constraint on the qualified process for substorm onset is that it must be associated with magnetic field lines of auroral arcs since substorm onsets start with brightening of a pre-existing auroral arc. Which particular process dominates in a given substorm depends on the present and past states of the magnetosphere as well as the external solar wind. The magnetosphere is almost perpetually driven by the solar wind to be near a critical point and in a metastable state. Magnetospheric disturbances occur sporadically in multiple localized sites. A substorm is realized when the combined effect of these localized disturbances become global in extent, much like the system-wide activity in a sandpile or avalanche model.  相似文献   

12.
The study of ULF waves in space has been in progress for about 12 years. However, because of numerous observational difficulties the properties of the waves in this frequency band (10-3 to 1 Hz) are poorly known. These difficulties include the nature of satellite orbits, telemetry limitations on magnetometer frequency response and compromises between dynamic range and resolution. Despite the paucity of information, there is increasing recognition of the importance of these measurements in magnetospheric processes. A number of recent theoretical papers point out the roles such waves play in the dynamic behavior of radiation belt particles.At the present time the existing satellite observations of ULF waves suggest that the level of geomagnetic activity controls the types of waves which occur within the magnetosphere. Consequently, we consider separately quiet times, times of magnetospheric substorms and times of magnetic storms. Within each of these categories there are distinctly different wave modes distinguished by their polarization: either transverse or parallel to the ambient field. In addition, these wave phenomena occur in distinct frequency bands. In terms of the standard nomenclature of ground micropulsation studies ULF wave types observed in the magnetosphere include quiet time transverse — Pc 1, Pc 3, Pc 4, Pc 5 quiet time compressional — Pc 1 and Pi 1; substorm compressional Pi 1 and Pi 2; storm transverse — Pc 1; storm compressional Pc 4, 5. The satellite observations are not yet sufficient to determine whether the various bands identified in the ground data are equally appropriate in space.Publication No. 982. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Calif. 90024.  相似文献   

13.
This paper discusses some of the well-documented flare phenomena and possible analogies with magnetospheric substorm phenomena. Such analogies do exist, but also important differences. The combination of forces from magnetospheric and solar physicists will bring us closer to the understanding of these nearby examples of unstable cosmic plasmas.  相似文献   

14.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   

15.
The interaction of planets with the solar wind produces a diversity of current systems, yet these can be classified into only a few different types, which include ionospheric currents, currents carried by magnetospheric boundaries like the magnetopause or ionopause, magnetotail currents, and currents flowing inside the magnetospheres, like ring currents, plasma sheet currents and currents aligned to the magnetic field lines (or field-aligned currents).  相似文献   

16.
Theoretical pressure balance arguments have implied that steady convection is hardly possible in the terrestrial magnetotail and that steady energy input necessarily generates a cyclic loading-unloading sequence, i.e., repetitive substorms. However, observations have revealed that enhanced solar wind energy input to the magnetospheric system may either lead to substorm activity or enhanced but steady convection. This topic is reviewed with emphasis on several recent case studies of the Steady Magnetospheric Convection (SMC) events. In these cases extensive data sets from both satellite and ground-based instruments from various magnetospheric and ionospheric regions were available.Accurate distinction of the spatial and temporal scales of the magnetospheric processes is vital for correct interpretation of the observations during SMC periods. We show that on the large scale, the magnetospheric configuration and plasma convection are stable during SMC events, but that both reveal considerable differences from their quiet-time assemblies. On a shorter time scale, there are numerous transient activations which are similar to those found during substorms, but which presumably originate from a more distant tail reconnection process, and map to the poleward boundary of the auroral oval. The available observations and the unresolved questions are summarized here.The tail magnetic field during SMC events resembles both substorm growth and recovery phases in the neartail and midtail, respectively, but this configuration may remain stable for up to ten hours. Based on observations and model results we discuss how the magnetospheric system avoids pressure balance problems when the plasma convects earthward.Finally, the importance of further coordinated studies of SMC events is emphasized. Such studies may shed more light on the substorm dynamics and help to verify quantitatively the theoretical models of the convecting magnetosphere.  相似文献   

17.
18.
At the ionospheric level, the substorm onset (expansion phase) is marked by the initial brightening and subsequent breakup of a pre-existing auroral arc. According to the field line resonance (FLR) wave model, the substorm-related auroral arc is caused by the field-aligned current carried by FLRs. The FLRs are standing shear Alfvén wave structures that are excited along the dipole/quasi-dipole lines of the geomagnetic field. The FLRs (that can cause auroral arc) thread from the Earthward edge of the plasma sheet and link the auroral arc to the plasma sheet region of 6–15 R E. The region is associated with magnetic fluctuations that result from the nonlinear wave-wave interactions of the cross-field current-instability. The instability (excited at the substorm onset) disrupts the cross-tail current which is built up during the growth phase of the substorms and results in magnetic fluctuations. The diversion of the current to polar regions can lead to auroral arc intensification. The current FLR model is based on the amplitude equations that describe the nonlinear space-time evolution of FLRs in the presence of ponderomotive forces exerted by large amplitude FLRs (excited during substorms). The present work will modify the FLR wave model to include the effects arising from magnetic fluctuations that result from current disruption near the plasma sheet (6–15 R E). The nonlinear evolution of FLRs is coupled with the dynamics of plasma sheet through a momentum exchange term (resulting from magnetic fluctuations due to current disruption) in the generalized Ohm's law. The resulting amplitude equations including the effects arising from magnetic fluctuations can be used to study the structure of the auroral arcs formed during substorms. We have also studied the role of feedback mechanism (in a dipole geometry of the geomagnetic field) in the formation of the discrete auroral arc observed on the nightside magnetosphere. The present nonlinear dispersive model (NDM) is extended to include effects arising from the low energy electrons originating from the plasma sheet boundary layer. These electrons increase the ionospheric conductivity in a localized patch and enhance the field-aligned current through a feedback mechanism. The feedback effects were studied numerically in a dipole geometry using the the NDM. The numerical studies yield the magnitude of the field-aligned current that is large enough to form a discrete auroral arc. Our studies provide theoretical support to the observational work of Newell et al. that the feedback instability plays a major role in the formation of the discrete auroral arcs observed on the nightside magnetosphere.  相似文献   

19.
The paper reviews the importance of inductive electric fields in explaining different magnetospheric and auroral phenomena during moderately and highly disturbed conditions. Quiet-time particle energization and temporal development of the tail structure during the substorm growth phase are explained by the presence of a large-scale electrostatic field directed from dawn to dusk over the magnetotail. Conservation of the first adiabatic invariant in the neutral sheet with a small value of the gradient in the magnetic field implies that the longitudinal energy increases at each crossing of the neutral sheet. At a certain moment, this may result in a rapid local growth of the current and in an instability that triggers the onset. During the growth phase energy is stored mainly in the magnetic field, since the energy density in the electric field is negligible compared to that of the magnetic field (ratio 1: 107). An analytical model is described in which the characteristic observations of a substorm onset are taken into account. One major feature is that the triggering is confined to a small local time sector. During moderate disturbances, the induction fields in the magnetotail are stronger by at least one order of magnitude than the average cross-tail field. Temporal development of the disturbed area results in X- and O-type neutral lines. Particles near to these neutral lines are energized to over 1 MeV energies within a few seconds, due to an effective combination of linear and betatron acceleration. The rotational property of the induction field promotes energization in a restricted area with dimensions equivalent to a few Earth's radii. The model also predicts the existence of highly localized cable-type field-aligned currents appearing on the eastern and western edges of the expanding auroral bulge. It is shown that the predictions agree with satellite observations and with the data obtained from the two-dimensional instrument networks operated in Northern Europe during the International Magnetospheric Study (IMS, 1976–79).  相似文献   

20.
A review is given on the distribution and origin of the large-scale electric field in the magnetosphere and its influence on the dynamical behavior of the magnetospheric plasma. Following a general discussion on the gross structure of the magnetosphere and its tail, two principal electric field systems are deduced from ground-based geomagnetic variations. One is responsible for the polar substorm, the DP 1 field, which is closely associated with the activation of the auroral electrojet. The other is responsible for the twin current vortices, the DP 2 field, and this represents the general convective system set up in the magnetospheric plasma.The origin of these magnetospheric electric fields is possibly resided in the domain of the solar wind interacting with the outer geomagnetic field. However, the mechanism, in which the energy is transferred, is still quite controversial. Several theories so far proposed are re-examined, and some modification of them are suggested to have a consistent understanding of these two types of electric fields. The effects of electric fields on magnetospheric plasma dynamics are described, such as the formation of the plasmapause, the acceleration and diffusion of energetic particles in the radiation belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号