首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.  相似文献   

2.
We investigate the generation of ballooning perturbations in the inner magnetosphere of the Earth in the dipole model of the geomagnetic field taking into account ionospheric boundary conditions. The ionosphere is considered as a thin layer with finite conductivity. The eigenmode spectrum is discrete and consists of Alfvén, slow magnetosonic, flute and incompressible modes. Their interaction depends on ionospheric conductivity. The decay rate is small in noon and night sectors and large in dawn and dusk sectors. The lowest stability threshold α/γ ≈ 4.25 is determined by flute modes.  相似文献   

3.
This paper discusses the orbit and attitude dynamics of a solar sail, and gives the sufficient conditions of a stable orbit and attitude coupled system. The stability of the coupled system is determined by the orbit stability and attitude stability. Based on the sufficient conditions, a spin-stabilized solar sail of cone configuration is proposed to evolve in the heliocentric displaced orbit. For this kind of configuration, the attitude is always stable by spinning itself. The orbit stability depends on the orbit parameters of the heliocentric displaced orbit, the ratio of the orbit radius to displaced distance and orbit angular velocity. If the center of mass and center of pressure overlap, it can be proved that the coupled system is stable when the orbit parameters are chosen in the stable region. When the center of mass and center of pressure offset exists, the stability of the coupled system can not be judged. A numerical example is given and the result shows that both the orbit and attitude are stable for the case.  相似文献   

4.
针对刚体航天器在参数不确定及环境扰动情况下的大角度姿态机动问题,提出一种自适应离散变结构姿态控制算法.建立包含航天器姿态运动学及动力学的仿射模型,并精确反馈线性化解耦;对得到的各线性动态方程离散化处理,由离散指数趋近律推导了参数化的离散变结构姿态控制律.最后基于Lyapunov稳定性理论设计了控制参数的自适应更新律,有效克服了模型中的各时变项及干扰项影响.仿真结果表明,该算法可有效减小干扰引起的姿态指令角跟踪偏差,确保了大角度姿态机动控制的精确性与鲁棒性,并且消除了常规变结构控制的抖振现象.  相似文献   

5.
The rapid evolution of in-orbit manufacturing will enable the fabrication of low-cost, large-scale space structures. In particular, the use of 3D printing technologies will remove traditional payload constraints associated with launch vehicles, due to fairing size and launch loads, thus allowing the construction of larger and lighter structures, such as orbiting solar reflectors. These structures will require efficient attitude control systems, able to provide the necessary torque for maneuvers and to counteract perturbations, such as gravity gradient and solar radiation pressure. In this paper, a top-level overview of actuator performances for orbiting solar reflectors is provided, and scaling laws associated with the required actuator mass and input power are developed. For each class of actuator, upper bounds on the maximum size of the structure which can be effectively controlled are presented. The results can also be extended to other classes of large planar Earth-pointing structures such as solar power satellites, solar sails, or large antennae.  相似文献   

6.
在双三角翼、椭圆机身的冀身融合体气动布局中配置二元矢量喷管,本文对该布局形式的矢量喷流和主流绕流之间的干扰流场及其对机翼气动特性的影响进行了系统的实验研究。结果表明,矢量喷流对主流及其气动特性的干扰效应可以分为三类:矢量喷流对附流的干扰效应仅限于喷口附近,主要表现为引射或阻塞作用;矢量喷流对前缘涡的干扰效应起稳定旋涡的作用,这样对稳定涡系的干扰影响很弱,但对破裂涡绕流的干扰效应较强,且随喷流矢量角的增大而增强。  相似文献   

7.
When a stratospheric airship free floats at pressure altitude, the sideslip angle of the airship is neither random nor against the wind, but is stable on certain values. According to classical potential flow theory, a simplified two-dimensional ellipse and three-dimensional ellipsoid are firstly analyzed respectively, which implied that the airship could present crosswind orientation. The numerical investigations (CFD) on the yaw stability based on a bare hull and a finned airship are employed for verifying the theory conclusion. It is found that the finned airships can remain stable when its sideslip Angle is 55–70°, which is less than 90° of the stable angle of the ellipsoid and bare hull, but statically unstable at low sideslip angles, its static instability is similar to that of dynamic flight. Then the fight data of three stratospheric airships is analyzed. The yaw stability in flight data generally agrees with expectations drawn of theoretical and numerical simulation. These investigations serve to provide references for yaw control and configuration design of airships.  相似文献   

8.
本文指出:在过去多数的日冕磁环稳定性的研究中,都存在一个未作说明、却又不容忽视的问题,即无形中都在磁环边缘处用了固壁边界条件,而它的采用与否对结果影响极大;另外在这些研究中只考虑m=1的模式也是不够的。这些问题都有待于进一步研究。   相似文献   

9.
This work develops a tension control strategy for deploying an underactuated spin-stable tethered satellite formation in the hub-spoke configuration. First, the Lagrange equation is used to model the spin-deployment dynamics of the tethered satellite formation. The central spacecraft is modeled as a rigid body, and the tethered subsatellites are simplified as lumped masses. Second, a pure tension controller has been proposed to suppress the tether libration motion in the deployment without thrusting at the subsatellites. A nonlinear sliding mode control is introduced in the tension controller for the underactuated system to suppress the periodic gravitational perturbations caused by the spinning hub-spoke tethered satellite formation. The unknown upper bounds of the perturbations are estimated by adaptive control law. The bounded stability of the closed-loop tension controller has been proved by the Lyapunov theory. Finally, numerical simulations validate the effectiveness and robustness of the proposed controller, i.e., tethers are fully deployed stably to the desired hub-spoke configuration.  相似文献   

10.
基于非线性模态的航天器铰接结构基频特性研究   总被引:2,自引:0,他引:2  
将航天器铰接结构简化为具有局部铰链非线性约束的多自由度系统,提出了对该类非线性系统动力学特性进行分析的方法。即首先通过拟合模态方法建立铰接结构系统的非线性动力学模型,然后通过数值方法得到系统的非线性模态,并以之为基础对铰接结构的基频特性进行研究。  相似文献   

11.
针对挠性结构振动控制中智能材料的特性,综合考虑压电敏感器/致动器的位置、尺寸、质量及其对挠性结构刚度特性的影响和控制律,建立系统状态空间模型,提出一种新的优化配置的性能指标和集成优化设计方法。运用李雅普诺夫稳定性定理证明了闭环系统的全局渐近稳定性,性能指标的最小值可取为相应矩阵的迹而不依赖于系统的初始状态。采用遗传算法寻优,数值仿真结果表明,该设计方法能够快速的抑制系统的振动。  相似文献   

12.
This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.  相似文献   

13.
    
针对一类大挠性机动飞行器,同时进行的姿态和轨道机动将激发挠性结构与中心刚体之间的平移耦合模态和转动耦合模态。为了提高姿态和轨道控制稳定度,提出了一种整合的改进型正向位置反馈(MPPF)控制方法抑制挠性结构的振动。首先建立了包含转动耦合和平移耦合模态的动力学模型,推导了耦合模态参数,然后基于MPPF控制律,设计了对转动耦合模态和平移耦合模态同时进行抑制的主动振动控制器,并采用M范数方法进行了参数优化,采用压电智能材料构建了主动振动控制系统。仿真结果表明所设计的控制器能够对机动飞行器的挠性结构振动起到很好的抑制效果,并且提高了姿态和轨道的控制稳定度。  相似文献   

14.
2D reconnection is possible only in connection with the existence of a singularity in the magnetic field line topology, associated with a magnetic null point or a current sheet. Both of these provide an X-type structure of the magnetic field where fields of opposite polarity meet and reconnect. In 3D a similar topology is found in a null point pair, when the null points are connected by a separator line. The separator is defined as the intersection line of the two null-point fan planes. This paper reports on the topological evolution of this configuration with respect to different perturbations emerging from imposed boundary velocities, using a nonlinear numerical approach.  相似文献   

15.
Complex magnetic and plasma structures observed in the coronal streamer belt (Crooker et al., 1993; Woo 1994) might arise from the instabilities and evolution of multiple current sheets formed by adjoining coronal helmet streamers. Previously we examined the static triple current sheet (TCS), and found that three linearly unstable modes exist, two of which are potentially observable by the LASCO instrument onboard SOHO (Dahlburg and Karpen 1995). Here we investigate the variations created in this model by the inclusion of wake flows, which have been observed in coronal streamers (see Figure 1). Our principal finding is that the structure of the modes is changed significantly by the Alfvénic and sub-Alfvénic wake flow, while their growth rates are not.  相似文献   

16.
17.
建立了质子交换膜燃料电池阴极的传质模型,综合考虑了影响电堆传热的多个因素,在此基础上针对内增湿式燃料电池堆建立了动态传热模型.采用Runge-Kutta-Felhberg法对模型进行求解,对电流、反应物过量系数、压强、冷却水流量等对电堆温度的影响进行了研究.结果表明,当电流大于25A时电堆温度将不能自行稳定在80℃以下,采用水冷可以有效地将电堆温度控制在较理想的范围内.在额定功率为5kW的燃料电池堆试验台架上进行了热管理试验,试验结果同模型预测值吻合较好.  相似文献   

18.
挠性空间结构周期性构型引起的低频段模态密集问题给振动控制中的控制对象建模、传感器优化配置和控制方案设计等造成困难.本文推导密频结构模态不稳定特性的产生机理,随即证明模态不稳定特性引发模型不确知性,而后基于可控性Gram矩阵的奇异值分析了密集模态的低可控度,并通过分析剩余模态的作用机理,说明模态密集将加剧溢出问题.在分析密集模态特性及影响的同时,给出控制设计中应注意的问题及可能的解决途径,对密频挠性结构在轨振动控制设计具有重要参考价值.  相似文献   

19.
利用武汉大学激光雷达的观测数据验证了当前Na层数值模型的普适性.在简化模型的基础上,采用微扰法,分析模型的稳定性.计算表明,在参数的调节范围内,所有特征值的实部都小于零,这说明该模型是个稳定系统.扰动垂直波长和扩散系数对模型的所有特征值都会产生较大影响,背景温度和化学成分密度则只对某些特征值影响较大.  相似文献   

20.
大展弦比联接翼结构重量估算   总被引:3,自引:1,他引:3  
联接翼是一种将前翼和后翼连接在一起的飞行器创新布局形式.针对飞机总体设计阶段需要知道飞机结构重量与气动外形参数之间关系的问题,提出了一种建立大展弦比联接翼布局飞机外形参数与结构重量之间关系的方法.该方法首先应用结构有限元的参数化建模和结构优化方法获得联接翼的结构重量,然后应用试验设计法和响应面模型获得外形参数与其结构重量之间的定量关系.应用这种方法,获得了某大展弦比联接翼结构重量与其外形参数(包括前翼展长、后翼展长与前翼展长之比、前翼展弦比、前翼上反角、前翼后掠角、前后翼根弦前缘纵向距离以及前后翼根弦前缘垂直距离)之间的关系.所获的计算结果对联接翼布局飞机总体参数的确定具有参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号