首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Voyager Planetary Radio Astronomy Experiment detected strong 40 kHz to 850 kHz radio emissions from Uranus after closest approach and somewhat weaker emissions, but none above 100 kHz before closest approach, on the dayside of Uranus. The time variations of these emissions closely match Uranus' rotation, in a period of 17.24 h, and are evidently controlled by the strength and shape of its magnetic field. Throughout the entire encounter the polarization of the emission was approximately lefthand, corresponding to extraordinary mode. The emission associated with the nightside pole was a relatively smooth continuum (free of bursts) with a Gaussian-shaped rise and fall at low frequencies, 200 kHz for example, but a Gaussian with a central dip nearly to zero lasting a little less than two hours at frequencies above 400 kHz. Half a rotation later, when Voyager was near the magnetic equator of Uranus and farthest from the nightside dipole tip, the continuum emission was absent, but very strong, narrowband impulsive bursts appeared. Voyager successfully acquired one brief (24 seconds long) record of high time resolution radio observations in the range 500 to 700 kHz. This record, which was made near closest approach, shows a hierarchy of fast variations. Several days after closest approach, at the times of bowshock crossings outbound, the continuum emissions were modulated strongly in a manner suggestive of the presence of waves in the bowshock regions.

The instrument also recorded possible Uranian electrostatic discharges, vertex early arcs occurring in sequences of more than a dozen events with approximately ten-minute period, and, as early as several days before closest approach in the frequency range below 100 kHz, very intense isolated bursts lasting tens of minutes.  相似文献   


2.
The Planetary Radio Astronomy instruments on Voyager 1 and 2 provided new, highly detailed measurements of several different kinds of strong, nonthermal radiation generated in the inner magnetospheres and upper ionospheres of Jupiter and Saturn. At Jupiter, an intense decameter-wavelength component (between a few tenths of a MHz and 39.5 MHz) is characterized by complex, highly organized structure in the frequency-time domain and by a strong dependence on the longitude of the observer and, in some cases, of Io. At frequencies below about 1 MHz there exists a (principally) kilometer-wavelength component of emission that is bursty, relatively broadbanded (typically covering 10 to 1000 kHz), and strongly modulated by planetary rotation. The properties of this component are consistent with a source confined to high latitudes on the dayside hemisphere of Jupiter. A second kilometric component is narrow-banded, relatively weak and exhibits a spectral peak near 100 kHz. The narrowband component also occurs periodically but at a repetition rate that is a few percent slower than that corresponding to the planetary rotation rate. This component is thought to originate at a frequency near the electron plasma frequency in the outer part of the Io plasma torus (8 to 10 RJ) and to reflect the small departures from perfect corotation experienced by plasma there.The Voyager instruments also detected intense, low frequency, radio emissions from the Saturn system. The Saturnian kilometric radiation is observed in a relatively narrow frequency band between 3 kHz and 1.2 MHz, is elliptically or circularly polarized, and is strongly modulated in intensity at Saturn's 10.66-hr rotation period. This emission is believed to be emitted in the right-hand extraordinary mode from regions near or in Saturn's dayside, polar, magnetospheric cusps. Variations in intensity at Saturn's rotation period may correspond to the rotation of a localized magnetic anomaly into the vicinity of the ionospheric footprint of the polar cusp. Variations in activity on time scales of a few days and longer seem to indicate that both the solar wind and the satellite Dione can also influence the generation of the radio emission.  相似文献   

3.
地面入射的大功率高频无线电波(泵波)和电离层等离子体之间的参数相互作用,能够引起静电波的激发,在一定条件下,产生不稳定性.本文用PIC静电粒子模拟方法,研究泵波与赤道电离层E区等离子体的相互作用.研究结果表明,泵波能够控制双流不稳定性的发生,在不同条件下,泵波对双流不稳定性起着稳定与不稳作用,模拟结果定性地与理论研究结果相符合,这为我们对不规则体产生的地面人工控制提供了依据.  相似文献   

4.
From the discrete spectra of the emissions from the comet in the frequency range from 30 to 195 kHz named CKR (Cometary Kilometric Radiation), movements of the bow shock at comet Halley are concluded, i.e., the observed CKR emissions can be interpreted as being generated and propagating from the moving shock. The motion of the shocks are possibly associated with time variation of the solar wind and of the cometary outgassings. By in-situ plasma waves observations using PWP (Plasma Wave Probe) onboard the Sakigake spacecraft, the characteristic spectra of the electrostatic electron plasma waves, the electron cyclotron harmonic waves, and the ion sound waves have been detected during the interval of the Halley's comet fly-by. Compared with the results of a Faraday cup observation and a magnetometer, it is concluded that these plasma wave phenomena are the manifestation of the ion pick-up processes. The ion pick-up processes are taking place even in the remote region within a distance range from 7×106 to 107 km from the cometary nucleus.  相似文献   

5.
A theoretical investigation has been made for adiabatic positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg–de Vries (KdV) equation. Either compressive or rarefactive solitons are shown to exist depending on the critical value of the ion density, which in turn, depends on the inhomogeneous distribution of the ion. The dissipative effects of non-adiabatic dust charge variation has been studied which cause generation of dust ion acoustic shock waves governed by KdV-Burger (KdVB) equation. The results of the present investigation may be applicable to some dusty plasma environments, such as dusty plasma existing in polar mesosphere region.  相似文献   

6.
Important observational manifestations of subvisible mesospheric dust are Polar Mesospheric Summer Echoes (PMSEs) which are produced by scattering from electron irregularities produced by dust charging. It has been observed that the PMSE strength can be artificially modified by using a ground-based ionospheric heating facility to perturb the electron irregularity source region that is believed to produce PMSE. Recently it has become evident that significant diagnostic information may be available about the dust layer from the temporal behavior of the electron irregularities during the heating process which modifies the background electron temperature. Particularly interesting and important periods of the temporal behavior are during the turn-on and turn-off of the radio wave heating. Most past theoretical models and experimental investigations have concentrated primarily on the later period. The objective here is to consider the temporal behavior and possibilities for diagnostic information available during the turn-on period of the radio wave. First, approximate analytical models are developed and compared to a more accurate full computational model as a reference. Then from the temporal behavior of the electron irregularities during the turn-on of the radio wave, the analytical models are used to obtain possible diagnostic information for various charged dust and background plasma quantities.  相似文献   

7.
Voyager 1 radio occultation study of Saturn's rings gives detailed information regarding the rings' radial structure and particle sizes. Structure within the rings is mapped to a radial resolution of few hundred m in the tenuous parts of ring C and the Cassini Division, and few km over ost of ring A. Fine resolution profiles reveal extremely sharp edges, very narrow gaps, and a host of wave phenomena. Particle size distributions obtained from occultation data within several ring regions are roughly consistent with an inverse cube power law with upper size cutoff in the 5 to 10 m radius range.  相似文献   

8.
Astrophysical plasma coexist with dust particles in many situations. These particles are charged either negatively or positively depending on their surrounding plasma environments. This system of such charged dust, electrons, and ions forms a so-called dusty plasma. We discuss the effects of the dust particles on the propagation and absorption of the Alfvén waves in (i) stellar winds and (ii) in star formation regions. In both cases, we have shown the importance of a strong damping of Alfvén waves due to the dust and the consequences for wind acceleration and the changes in the Jeans length related to the star formation process.  相似文献   

9.
Electric antenna responds to three effects caused by a dust impact-induced plasma cloud: -change separation electric fields, -charging of the antenna, -pulse of the spacecraft potential. Each effect, being a function of the induced charge (particle mass), depends on the ambient plasma conditions, including photo- and secondary emissions. The first two effects are also strongly dependent on the impact geometry. In the paper an attempt is made to consider systematically the dependence on the charge and ambient conditions for two main types of antenna (probe, wire/cylinder) and for both configurations (monopole, dipole). A conclusion is drawn that for a plasma wave/radio experiment to be utilized as a dust detector, the most advantageous option is a monopole, whose probe (wire/cylinder) is not exposed to dust-induced plasma.  相似文献   

10.
Results of a satellite experiment are presented on detection of VLF and ELF-waves excited by irradiation of the night ionosphere F-region by the field of a nonmodulated high-power radio wave. The excited VLF and ELF-waves have been detected at the topside ionosphere heights h=500–1000 km in the frequency bands 8 kHz相似文献   

11.
Cassini radio and plasma wave surveys aim to study radio emissions, plasma waves, thermal plasma and dust near Saturn. Using the characteristic solution and dynamics method, the influence of electron beam on the loss cone and bi-Maxwellian distribution of whistler mode waves in the parallel alternating electric field and magnetic field is studied. The dispersion relation and the growth rate of Saturn's magnetic layer were deduced and calculated in detail. Parameter analysis is performed by changing the parameters of the plasma like number density, AC frequency, temperature anisotropy, etc. The influence of AC frequency on Doppler shift and the comparative study of growth rate of oblique and parallel propagating waves are analyzed using generalized distribution function. We found temperature anisotropy AT=1.25 can explain the linear spatiotemporal growth rate of whistler mode waves. It provides the majority of the observed frequency integral power. It can be seen that the effective parameters for the generation of Whistler mode waves are not only temperature anisotropy, but also the relativistic factors discussed in the results and discussion section, and the AC field frequency and width of the loss cone distribution function.  相似文献   

12.
Above the ionosphere of Venus, several instruments on the Pioneer Orbiter detect correlated wave, field and particle phenomena suggestive of current-driven anomalous resistivity and auroral-type particle acceleration. In localized regions the plasma wave instrument measures intense mid-frequency turbulence levels together with strong field-aligned currents. Here the local parameters indicate that there is marginal stability for ion acoustic waves, and the electron temperature probe finds evidence that energetic primaries are present. This suggests an auroral-type energy deposition into the upper atmosphere of Venus. These results appear to be consistent with the direct measurements of auroral emissions from the Pioneer-Venus ultraviolet imaging spectrometer.  相似文献   

13.
There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors – solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs – effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena are briefly mentioned and some of them are treated in more detail.  相似文献   

14.
15.
The Voyager 1 and 2 observations of the fine structure of the Saturnian ring system demonstrate the importance of electric forces in controlling the dynamics of fine (charged) dust in the rings. A new theory (“gravito-electrodynamics”) which combines the electric and the gravitational forces on these grains leads to natural explanations of a number of observed ring phenomena. If plasma processes play a significant role in the dynamics of the ring system at the present time, it is difficult to avoid the conclusion that they also played an important and perhaps crucial role at cosmogonic times during the emplacement and subsequent condensation of the initial dusty plasma. We believe that the Saturnian ring system represents a “time-capsule” containing vital clues about the physical processes operating during the early stages of its formation. We will show that both its overall structure as well as its fine structure, as determined by Voyagers 1 and 2, indicate the crucial importance of plasma processes in its formation and subsequent evolution.  相似文献   

16.
The Voyager 2 photopolarimeter experiment observed the intensity and polarization of scattered sunlight from the atmospheres of Saturn and Titan in the near-UV at 2640 Å and in the near-IR at 7500 Å. Measurements of Saturn's limb brightening and polarization at several phase angles up to 70° indicate that a significant optical depth of UV absorbers are present in the top 100 mbar of Saturn's atmosphere in the Equatorial Zone and north polar region, and possibly at other latitudes as well. UV absorbers are prominent in polar regions, suggesting that charged particle precipitation from the magnetosphere may be important in their formation.The whole-body polarization of Titan is strongly positive in both the UV and near IR. If spherical particles are responsible for the polarization, no single size distribution or refractive index can account for the polarization at both wavelengths. The model atmosphere proposed by Tomasko and Smith [1], characterized by a gradient in particle size with altitude, seems capable of explaining the Voyager observations. If non-spherical particles predominate, the Voyager observations place important constraints on their scattering properties.  相似文献   

17.
We discuss the asymmetry of the heliospheric discontinuities obtained from the analysis of 3D modeling of the solar wind (SW) interaction with local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the flow of neutral particles is described by the Boltzmann equation. The emphasis is made on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms whose transport through the heliosphere is modeled kinetically, using a Monte Carlo approach. We show that the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM is highly anisotropic and evaluate a possible angle between the hydrogen deflection plane measured in the SOHO SWAN experiment and the plane containing the ISMF and LISM velocity vectors for different ISMF strengths. It is shown that the ISMF of a strength greater than 4 μG can account for the 10 AU difference in the TS heliocentric difference observed during its crossing by the Voyager 1 and Voyager 2 spacecraft, which however results in a larger discrepancy between the calculated and observed velocity distributions. The effect of a strong ISMF on the distribution of plasma quantities in the inner heliosheath and on 2–3 kHz radio emission is discussed.  相似文献   

18.
本文给出了暖电子等离子体中各种频率波的射线方向.揭示了射线方向矢量的一些重要特征.特别是当波在暖等离子体相应的冷等离子体谐振区附近,暖等离子体中有一个等离子体波在传播.电子等离子体波可以与寻常波或非常波相联接,并使波能比在一个相应冷等离子体中有更宽的传播角域.   相似文献   

19.
Beam-plasma interaction effects are studied during the active space experiment with electron and Xe-ion beam injections in an ionospheric plasma. Permanent 40-kHz-modulated electron beam injection occurs simultaneously with a xenon-ion beam injected by the Hall-type plasma thruster operating in a square-pulse mode (100/50 s for a job/pause duration). The unusual behavior of the background charged particle fluxes and wave activity stimulated during the beam-plasma interaction have been registered by the scientific instruments onboard Intercosmos-25 station (IK-25) and Magion-3 subsatellite. The longitudinal and electromagnetic wave instabilities and their mutual relationship are considered in order to explain the observed effects. The excitation of electrostatic waves by the electron injection has been considered for different resonance conditions near the linear stability boundary. Beam-driven electromagnetic instability is responsible for the backward-propagating whistler waves excited via cyclotron resonance. Competition of these two beam instabilities is one of the subjects of the present study.  相似文献   

20.
We outline an analytical method for studying the motion of charged dust particles that orbit an oblate planet having a tilted, offset, dipolar magnetic field. Our computed trajectories closely mimic previous numerical results; equilibrium dust potentials must be less then 10 volts or the Jovian ring would be thicker than observed. We identify several Lorentz resonances, where the periods of components of the Lorentz force, as seen by a reference particle moving in the equatorial plane, match the particle's orbital period; several seem to be near observed features of the Jovian ring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号