首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid Hormone-related Protein (PTHrP) has been shown to be essential for the development and homeostatic regulation of lung and bone. Since both lung and bone structure and function are affected by microgravity, we hypothesized that 0 x g down-regulates PTHrP signaling. To test this hypothesis, we suspended lung and bone cells in the simulated microgravity environment of a Rotating Wall Vessel Bioreactor, which simulates microgravity, for up to 72 hours. During the first 8 hours of exposure to simulated 0 x g, PTHrP expression fell precipitously, decreasing by 80-90%; during the subsequent 64 hours, PTHrP expression remained at this newly established level of expression. PTHrP production decreased from 12 pg/ml/hour to 1 pg/ml/hour in culture medium from microgravity-exposed cells. The cells were then recultured at unit gravity for 24 hours, and PTHrP expression and production returned to normal levels. Based on these findings, we have obtained bones from rats flown in space for 2 weeks (Mission STS-58, SL-2). Analysis of PTHrP expression by femurs and tibias from these animals (n=5) revealed that PTHrP expression was 60% lower than in bones from control ground-based rats. Interestingly, there were no differences in PTHrP expression by parietal bone from space-exposed versus ground-based animals, indicating that the effect of weightlessness on PTHrP expression is due to the unweighting of weight-bearing bones. This finding is consistent with other studies of microgravity-induced osteoporosis. The loss of the PTHrP signaling mechanism may be corrected using chemical agents that up-regulate this pathway. In conclusion, PTHrP represents a stretch-sensitive paracrine signaling mechanism that may sense gravity.  相似文献   

2.
Our current understanding of hypogravity-induced atrophy of skeletal muscles is based primarily on studies comparing pre- and post-flight properties of muscles. Interpretations are necessarily qualified by the assumption that the stress of reentry and readjustment to terrestrial gravity do not alter the parameters being analyzed. The neuromuscular system is highly responsive to changes in functional demands and capable of rapid adaptation, making this assumption questionable. A reexamination of the changes in the connective tissue and synaptic terminals of soleus muscles from rats orbited in biosatellites and sampled postflight indicates that these structural alterations represent adaptative responses of the atrophic muscles to the increased workload of returning to 1 G, rather than hypogravity per se. The atrophy of weightlessness is postulated to result because muscles are both underloaded and used less often. Proper testing of this hypothesis requires quantitation of muscle function by monitoring electromyography, force output and length changes during the flight. Experiments conducted in space laboratories, like those being developed for the Space Shuttle, will avoid the complications of reentry before tissue sampling and allow time course atudies of the rate of development of adaptive changes to zero gravity. Another area of great importance for future studies of muscle atrophy is inflight measurement of plasma levels of hormones and tissue receptor levels. Glucocorticoids, thyroid hormone and insulin exert dramatic regulatory influences on muscle structure. Prevention of neuromuscular atrophy becomes increasingly more important as spaceflights increase in duration. Definition of the atrophic mechanism is essential to developing means of preventing neuromuscular atrophy.  相似文献   

3.
The health condition and work capacity of space travellers during many flights remained adequate. Medical examinations performed during and after space flights consistently revealed the following symptom-complexes: space motion sickness, changes in the muscles system, hemodynamics, fluid-electrolyte balance and its regulation, calcium metabolism and bone density, transient erythrocytopenia and immunity decline. This paper presents a detailed discussion of the changes observed in space flight.  相似文献   

4.
We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.  相似文献   

5.
We examined the peculiarities of the structure of the blood-vascular bed and perivascular cells in zones of osteogenesis in the epiphyses and metaphises of femoral bones of rats, flown aboard the US laboratory SLS-2 for two weeks by electron microscopy and histochemistry. In zones of bone remodeling, there was a tendency for a reduction of sinusoid capillary specific volume. Endotheliocytes preserve the typical structure. In the population of perivascular cells, we discovered differentiating osteogenic cells that contained alkaline phosphomonoesterase as well as cells that don't contain this enzyme and differentiate into fibroblasts. The fibroblasts genesis in zones of adaptive remodeling of spongy bones leads to a further development of fibrous tissue that is not subject to mineralization.  相似文献   

6.
随着载人航天事业的不断发展,空间失重环境引起的航天员健康问题(心血管疾病、免疫抑制、肌肉萎缩、骨质疏松等)日益突出,这已成为人类探索空间的一大阻碍.越来越多的研究关注到微重力条件下机体及细胞的变化.近期的研究表明,在细胞水平上,微重力会引起细胞降解,改变细胞骨架,并造成细胞在分子水平(如细胞增殖、分化、迁移、粘附、信号转导等过程)的一系列改变.本文对微重力条件下免疫细胞、内皮细胞、骨细胞、癌细胞的相关研究进行了归纳总结,研究结果可为微重力条件下机体及相关细胞的研究提供指导,为治疗或缓解微重力条件造成的疾病提供方法和思路.   相似文献   

7.
Effects of microgravity on bone and calcium homeostasis.   总被引:1,自引:0,他引:1  
Mechanical function is known to be of crucial importance for the maintenance of bone tissue. Gravity on one hand and muscular effort on the other hand are required for normal skeletal structure. It has been shown by numerous experimental studies that loss of total-body calcium, and marked skeletal changes occur in people who have flown in space. However, most of the pertinent investigations have been conducted on animal models, including rats and non-human primates, and a reasonably clear picture of bone response to spaceflight has emerged during the past few years. Osteopenia induced by microgravity was found to be associated with reduction in both cortical and trabecular bone formation, alteration in mineralization patterns and disorganization of collagen, and non-collagenous protein metabolism. Recently, cell-culture techniques have offered a direct approach of altered gravity effects at the osteoblastic-cell level. But the fundamental mechanisms by which bone and calcium are lost during spaceflight are not yet fully known. Infrequency and high financial cost of flights have created the necessity to develop on-Earth models designed to mimic weightlessness effects. Antiorthostatic suspension devices are now commonly used to obtain hindlimb unloading in rats, with skeletal effects similar to those observed after spaceflight. Therefore, actual and "simulated" spaceflights, with investigations conducted at whole body and cellular levels, are needed to elucidate pathogeny of bone loss in space, to develop effective countermeasures, and to study recovery processes of bone changes after return to Earth.  相似文献   

8.
Our research over the last several years has suggested that young (3 mo) rats exposed to whole-body 56Fe irradiation show neuronal signal transduction alterations and accompanying motor behavioral changes that are similar to those seen in aged (22-24 mo) rats. Since it has been postulated that 1-2% of the composition of cosmic rays contain 56Fe particles of heavy particle irradiation, there may be significant CNS effects on astronauts on long-term space flights which could produce behavioral changes that could be expressed during the mission or at some time after the return. These, when combined with other effects such as weightlessness and exposure to proton irradiations may even supercede mutagenic effects. It is suggested that by determining mechanistic relationships that might exist between aging and irradiation it may be possible to determine the common factor(s) involved in both perturbations and develop procedures to offset their deleterious effects. For example, one method that has been effective is nutritional modification.  相似文献   

9.
Microgravity and bone cell mechanosensitivity.   总被引:5,自引:0,他引:5  
The capacity of bone tissue to alter its mass and structure in response to mechanical demands has long been recognized but the cellular mechanisms involved remained poorly understood. Bone not only develops as a structure designed specifically for mechanical tasks, but it can adapt during life toward more efficient mechanical performance. Mechanical adaptation of bone is a cellular process and needs a biological system that senses the mechanical loading. The loading information must then be communicated to the effector cells that form new bone or destroy old bone. The in vivo operating cell stress derived from bone loading is likely the flow of interstitial fluid along the surface of osteocytes and lining cells. The response of bone cells in culture to fluid flow includes prostaglandin (PG) synthesis and expression of prostaglandin G/H synthase inducible cyclooxygenase (COX-2). Cultured bone cells also rapidly produce nitric oxide (NO) in response to fluid flow as a result of activation of endothelial nitric oxide synthase (ecNOS), which enzyme also mediates the adaptive response of bone tissue to mechanical loading. Earlier studies have shown that the disruption of the actin-cytoskeleton abolishes the response to stress, suggesting that the cytoskeleton is involved in cellular mechanotransduction. Microgravity, or better near weightlessness, is associated with the loss of bone in astronauts, and has catabolic effects on mineral metabolism in bone organ cultures. This might be explained as resulting from an exceptional form of disuse under near weightlessness conditions. However, under near weightlessness conditions the assembly of cytoskeletal elements may be altered since it has been shown that the direction of the gravity vector determines microtubular pattern formation in vivo. We found earlier that the transduction of mechanical signals in bone cells also involves the cytoskeleton and is related to PGE2 production. Therefore it is possible that the mechanosensitivity of bone cells is altered under near weightlessness conditions, and that this abnormal mechanosensation contributes to disturbed bone metabolism observed in astronauts. In our current project for the International Space Station, we wish to test this hypothesis experimentally using an in vitro model. The specific aim of our research project is to test whether near weightlessness decreases the sensitivity of bone cells for mechanical stress through a decrease in early signaling molecules (NO, PGs) that are involved in the mechanical loading-induced osteogenic response. Bone cells are cultured with or without gravity prior to and during mechanical loading, using our modified in vitro oscillating fluid flow apparatus. In this "FlowSpace" project we are developing a cell culture module that is used to provide further insight in the mechanism of mechanotransduction in bone.  相似文献   

10.
Preparing the German Spacelab Mission D-2 project "Gravity Perception and Neuronal Plasticity"--STATEX II--ground based experiments have been performed with larvae of the amphibian vertebrate Xenopus laevis Daud. to study the reactions to different levels of acceleration forces and profiles. The larvae have been exposed to accelerations of up to 5 g for different time periods using a modified laboratory centrifuge and the NIZEMI (Niedergeschwindigkeits-Zentrifugen-Mikroskop) which allows direct observation and video documentation. The results will be discussed and compared with those of the D1-Mission, parabolic flights, and simulated weightlessness.  相似文献   

11.
Aboard the German-Spacelab-Mission D-2 the project "Gravity Perception and Neuronal Plasticity (STATEX II)" was performed. STATEX is for STATolith EXperiment. Objects were growing tadpoles of the South African Toad (Xenopus laevis D.) and a juvenile cichlid fish (Oreochromis mossambicus). The results give a broader base for the understanding of how environmental stimuli (e.g. linear accelerations) affect the development and function of the gravity perceiving systems in these two vertebrates. These systems are accepted as models for the human vestibulum. Results of experiments in hyper-g (up to 5 g), simulated weightlessness (Fast-rotating-clinostat) and parabolic flights are compared and discussed.  相似文献   

12.
Research from several sources indicates that young (3 mo) rats exposed to heavy particle irradiation (56Fe irradiation) produces changes in motor behavior as well as alterations in neuronal transmission similar to those seen in aged (22-24 mo) rats. These changes are specific to neuronal systems that are affected by aging. Since 56Fe particles make up approximately 1-2% of cosmic rays, these findings suggest that the neuronal effects of heavy particle irradiation on long-term space flights may be significant, and may even supercede subsequent mutagenic effects in their mission capabilities. It is suggested that among other methods, it may be possible to utilize nutritional modification procedures to offset the putative deleterious effects of these particles in space.  相似文献   

13.
In vertebrates (including man), altered gravitational environments such as weightlessness can induce malfunctions of the inner ears, based on irregular movements of the semicircular cristae or on dislocations of the inner ear otoliths from the corresponding sensory epithelia. This will lead to illusionary tilts, since the vestibular inputs are not confirmed by the other sensory organs, which results in an intersensory conflict. Vertebrates in orbit therefore face severe orientation problems. In humans, the intersensory conflict may additionally lead to a malaise, commonly referred to as space motion sickness (SMS), a kinetosis. During the first days at weightlessness, the orientation problems (and SMS) disappear, since the brain develops a new compensatory interpretation of the available sensory data. The present review reports on the neurobiological responses--particularly of fish--observed at altered gravitational states, concerning behaviour and neuroplastic reactivities. Recent investigations employing microgravity (spaceflight, parabolic aircraft flights, clinostat) and hyper-gravity (laboratory centrifuges as ground based research tools) yielded clues and insights into the understanding of the respective basic phenomena.  相似文献   

14.
失重因素对航天员体温调节影响的分析   总被引:1,自引:0,他引:1  
系统地总结了实际载人航天及地面模拟中失重因素引起的航天员生理性体温调节功能变化的种种现象和内在联系。指出在失重环境下 ,自然对流消失 ,血液重新分布 ,排尿性失水增加 ,血浆容积变小 ,心血管系统功能下降 ,最大氧摄入量降低 ,这些都可导致体温调节能力受损 ,最终使航天员的高温耐力明显下降。文章同时指出 ,在体温调节系统中 ,行为性调节是生理性调节的补充和延伸 ,前者只有通过后者才能发挥作用 ,因此 ,在航天器座舱温控系统及航天服通风 -液冷系统的设计中 ,应充分考虑失重因素的影响。  相似文献   

15.
Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles--mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus--are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.  相似文献   

16.
Human subjects pointed at stationary visual targets without sight of their arm while the force environment was varied by applying weight or spring loads to the hand. The path travelled by the finger, pointing accuracy, and the shape of the finger velocity profile remained invariant across all force environments after a single practice trial. However, the magnitude and duration of the velocity profile depended consistently on the presence and size of a weight load. In contrast, velocity was not affected by spring loads. An analysis of movement dynamics in our study indicated that inertial and gravitational load components were compensated by separate mechanisms, the former employing time- and the latter magnitude scaling of muscle force profiles. The presence of such separate mechanisms led us to predict little problems for movement dynamics in weightlessness, which was indeed confirmed in a study on pointing movements aboard the KC-135 aircraft.  相似文献   

17.
This study presents qualitative and quantitative data concerning gravity-dependent changes in the swimming behaviour of developing cichlid fish larvae (Oreochromis mossambicus) after a 9 resp. 10 days exposure to increased acceleration (centrifuge experiments), to reduced gravity (fast-rotating clinostat), changed accelerations (parabolic aircraft flights) and to near weightlessness (2nd German Spacelab Mission D-2). Changes of gravity initially cause disturbances of the swimming performance of the fish larvae. With prolonged stay in orbit a step by step normalisation of the swimming behaviour took place in the fish. After return to 1g earth conditions no somersaulting or looping could be detected concerning the fish, but still slow and disorientated movements as compared to controls occurred. The fish larvae adapted to earth gravity within 3-5 days. Fish seem to be in a distinct early developmental stages extreme sensitive and adaptable to altered gravity; However, elder fish either do not react or show compensatory behaviour e.g. escape reactions.  相似文献   

18.
本文研究了-6°卧床模拟失重对T淋巴细胞受到有丝分裂原刺激后增殖能力和外周血总T淋巴细胞亚群(CD3+T细胞)、辅助/炎性T细胞亚群(CD4+T细胞)、杀伤T细胞亚群(CD8+T细胞)、及表达CD25分子细胞数的影响,同时观察生长激素、促肾上腺皮质激素、皮质激素的改变,来探讨免疫功能的变化与内分泌系统改变的关系.结果表明,模拟失重造成的免疫功能下降与内分泌系统紊乱有关.   相似文献   

19.
The program of the 7-day flight of the biosatellite Cosmos-1667 launched in July 1985 included experiments on two rhesus monkeys, ten Wistar SPF rats, ten newts, Drosophila flies, maize seedlings, lettuce sprouts, and unicellular organisms - Tetrahymena. The primate study demonstrated that transition to orbital flight was accompanied by a greater excitability of the vestibular apparatus and an increased linear blood flow velocity in the common carotid artery. The rat studies showed that atrophy of antigravity muscles and osteoporosis of limb bones developed even during short-term exposure to microgravity. The experiments on other living systems revealed no microgravity effects on the cell division rate, proliferative activity of cells of regenerating tissues and organs, energy metabolism of developing insects, structure or chemical composition of higher plant seedlings.  相似文献   

20.
With the approaching of the Chinese Space Station (CSS) era, the focus of space medicine applications and related research has shifted to addressing the astronauts' health support in long-duration spaceflights, including nutrition, countermeasure against the physiological effects of weightlessness, medical monitoring and support, psychology status, etc., and accordingly the human experiments to simulate long-duration weightlessness have been carried out. Increasingly, basic research has been put forward in the key areas, such as space bone loss, cardiovascular dysfunction and the molecular mechanisms underlying radiobiological effects. Moreover, specific novel research fields, such as hypometabolism technology, were explored. The research projects in the field of space medicine experiment, as an important aspect of the Chinese Space Station's application, have been officially approved and launched.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号