首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 640 毫秒
1.
作为新型航天器姿态机动执行机构,磁悬浮控制力矩陀螺(MSCMG)长时间工作在高真空环境下且高速转子完全悬浮,散热条件差,系统温度过高,导致陀螺组件产生较大的热应力,降低了陀螺结构部件的强度。为减小温度场对陀螺结构部件强度的影响,提高陀螺结构的可靠性,采用有限元法计算出磁悬浮控制力矩陀螺工作状态下的温度场,并基于温度场分析陀螺结构部件的应力分布情况,明确温度场对陀螺结构部件力学性能产生的影响。建立了陀螺热网络模型,根据热网络模型与热网络方程分析热量传递路径及温度影响因素,并提出相应的优化措施。经优化,定子组件最高温度从66.5℃降至49℃,转子组件最高温度从91.7℃降至76.9℃。陀螺定子组件的强度安全系数由1.52提升为1.73,提高了13.8%,陀螺转子组件的强度安全系数由1.32提升为1.56,提高了18.2%。   相似文献   

2.
针对柔性支撑引起控制力矩陀螺(CMG)框架控制性能下降的问题,建立了柔性支撑条件下控制力矩陀螺的动力学模型,分析了柔性支撑扰动力矩的耦合机理并给出了解析模型.据此,设计了一种积分滑模控制策略,用于提升对CMG框架动力学特性变化和新增扰动力矩的鲁棒性.仿真结果表明,该控制策略相比传统的PID控制具有更好的动态过程和稳态性能,提升了柔性支撑下控制力矩陀螺框架速度的闭环控制性能.  相似文献   

3.
介绍天宫一号目标飞行器采用的单框架控制力矩陀螺的总体结构、技术指标和验证试验.该单框架控制力矩陀螺的角动量为200Nms,最大可输出力矩为20Nm,响应带宽为2Hz,其中2个控制力矩陀螺高速转子已经进行了25000h的寿命试验.天宫一号目标飞行器姿态控制系统共采用了6个单框架控制力矩陀螺来输出姿态控制力矩,当1个或2个控制力矩陀螺失效时姿态控制系统仍能正常工作.  相似文献   

4.
基于光纤陀螺的保偏光纤热致双折射   总被引:2,自引:0,他引:2  
针对光纤陀螺在温度变化条件下的性能恶化问题,理论上分析了保偏光纤的热致双折射引起的偏振耦合是局限光纤陀螺精度的主要因素.采用有限元法计算光纤线圈在不同温度下的应力分布,并根据高低温不同的应力状态分别推导了双折射的变化情况.在光纤陀螺工作温度范围内,选取6个典型温度点计算光纤环上热应力和消光比的变化,结果显示,干扰双折射随温度变化的减小而减小,并将理论计算结果用测试消光比的试验验证.研究表明,双涂敷层光纤、胶粘剂、陀螺金属骨架材料的热力学性能的差异,导致光纤线圈在不同温度下折射率改变.在60℃时,光纤折射率差约为1×10-4,与光纤本征折射率差5.5×10-4达到同一个量级,这将严重影响光纤保偏性能及陀螺精度.  相似文献   

5.
控制力矩陀螺作为执行机构,是保障航天器在轨寿命和工作性能的核心部件之一。为了抑制控制力矩陀螺外框电机的共模电压,提高控制力矩陀螺的在轨寿命,本文提出了一种三相四桥臂的拓扑结构与优化的SVPWM调制算法结合的共模电压抑制方法,调制过程中避免零矢量的使用,使驱动器可以保持在平衡状态,经过仿真试验的结果对比分析,验证了这种方法可以有效的抑制系统的共模电压。  相似文献   

6.
固胶对保偏光纤环的影响   总被引:2,自引:2,他引:0  
阐述了固胶对光纤环及光纤陀螺两个重要性能参数——温度性能和振动性能的作用和影响,针对某项目对光纤陀螺实际要求的条件进行了陀螺的全方面试验,并分析试验结果.试验和分析结果表明,固胶对光纤环和光纤陀螺的影响是由涂胶工艺不当带来的,涂胶量及涂胶的均匀度是产生影响的两个主要因素,胶的温度性能及自身固化后状态对光纤环性能也会产生影响.得出结论:固胶工艺或固胶方式、方法对光纤环的性能有极大的影响,特别是对光纤环在温度变化时的影响表现更为明显,另外,固胶对光纤环的影响,还表现在胶固化后的状态.   相似文献   

7.
导电环用于200N·m·s控制力矩陀螺高速转子电信号的传输,其使用寿命直接决定了200N·m·s控制力矩陀螺整机寿命,因此需要对200N·m·s控制力矩陀螺用导电环进行加速寿命试验.对试验目的、试验对象、加速因子、试验环境、试验系统组成、失效判据进行了详细描述,对导电环寿命试验期间的电噪声、摩擦力矩、绝缘性能等测试结果进行的分析表明,在进行了4×106转的寿命试验后,导电环的各项性能指标仍能够满足200N·m·s控制力矩陀螺的使用需求.  相似文献   

8.
空心阴极常用于霍尔或离子电推进系统的电子源,其热特性对自身工作寿命和能效有重要影响。为考察工作过程中阴极的温度分布和热耗散特性,对空心阴极进行数值分析。采用等离子体流场计算数据与温度场计算数据互为输入条件,进行反复迭代的方式,计算稳态下阴极内部的温度场。为验证模型与计算代码的正确性,在真空舱内开展阴极的放电试验,利用热电偶与光学温度计对阴极5个测点进行测温,并将试验结果与计算结果进行比对。结果表明,计算的最大误差在5%以内。在此基础上,考察了不同结构、材料空心阴极内部的温度分布以及热耗散情况。当阴极整体长度由小变大时,阴极整体热耗散功率会先减小后增大,而采用发射率较高的外壳材料会提高阴极整体热耗散且降低整体温度。  相似文献   

9.
控制力矩陀螺是一种用于航天器姿态机动和稳定的重要执行机构.为掌握控制力矩陀螺力学试验后的微振动特性变化,用加速度传感器测量其工作状态下的加速度响应,用多分量测力计测量其工作状态下的力和力矩响应,并进行时域统计分析和频域FFT分析.结果表明,轴承偏心和点状缺陷引起的通过频率成分及其倍频成分是加速度响应的主要成分,但皆位于300 Hz以上的高频区,如果将加速度响应转换成位移响应,则转子标称转速频率成分仍占主导,力和力矩响应结果也验证了该论断.力学试验使控制力矩陀螺微振动恶化,主要原因是静、动不平衡量变大、轴承偏心变大和轴承受损.此外,转子转速和结构模态的动力耦合也会影响微振动幅值.  相似文献   

10.
光纤陀螺温度影响与误差补偿   总被引:8,自引:2,他引:6  
温度性能是光纤陀螺工程化面临的难题之一,建立温度模型是提高光纤陀螺温度性能的有效方法.从理论上推导了光纤陀螺零偏、标度因数温度误差是由于热作用于光纤环导致光路非互易性所引起.分析了光纤陀螺热源产生的两个主要原因:光纤陀螺内部有源器件工作过程中产生的热;外界环境温度变化引起光纤环内部温度场分布变化.二者对光纤陀螺的影响是随机的,引起的光纤陀螺零偏漂移和标度因数误差可以通过建立温度模型进行补偿.采用线性回归方法,建立了光纤陀螺零偏温度漂移模型和标度因数温度模型,对光纤陀螺输出数据进行补偿,有效改善了光纤陀螺温度性能,实验验证了模型的正确型和补偿算法的有效性.   相似文献   

11.
控制力矩陀螺(CMG,control moment gyro)系统存在多种误差与扰动,影响航天器的姿态控制精度.分析了大型单框架控制力矩陀螺(SGCMG,single gimbal control moment gyro)各主要组成部分的特性、误差及扰动,包括转子动静不平衡、转子轴的安装误差、轴承摩擦、转子电机特性、框架电机特性和谐波减速器特性.通过建立大型SGCMG的动力学精细模型并进行数学仿真,得到了大型SGCMG主要误差与扰动对其输出力矩的影响:在框架伺服系统加装谐波齿轮减速机构可以明显提高SGCMG输出力矩精度,同时也给框架带来高频谐振;转子动不平衡造成的扰动力矩是导致SGCMG在其力矩输出轴和框架轴方向产生输出力矩偏差的主要原因.  相似文献   

12.
单框架控制力矩陀螺系统的构型分析和对比研究   总被引:6,自引:0,他引:6  
根据实际情况限定了大型航天器单框架控制力矩陀螺 (SGCMG)构型分析研究的对象 ;根据构型分析的主要指标 ,对常用的双平行构型、三平行构型、金字塔构型、四棱锥构型、五面锥构型和五棱锥构型等六种构型进行了分析 ,对比了相互的优缺点 ,得出了最优构型为五棱锥构型的结论 ,为大型航天器SGCMG系统选型提供了理论基础  相似文献   

13.
单框架控制力矩陀螺(SGCMG)是应用在航天器上的一类惯性执行机构,但当多个SGCMG协调工作时,由多个SGCMG组成的SGCM5G系统会出现奇异现象,不能产生所期望的控制力矩。为回避系统奇异、必须对SGCMG系统的奇点在框架角空间中的分布作一定的了解。文章则针对框架轴非共面锥形对称安装的SGCMG系统,证明了对于角动量空间中的任意一点,其对应的框架角空间中的奇点是有限的。  相似文献   

14.
针对控制力矩陀螺框架伺服系统传统PI控制对干扰、负载变化等不确定因素的控制能力不足,设计了模糊PI控制器,利用参数自整定速度控制器实时调整参数,实现了框架伺服系统的高稳定性控制.仿真结果表明,相比传统的PI控制策略,响应快,超调小,无需修改参数,有更好的动静态特性,能更好地满足控制力矩陀螺框架伺服控制系统的鲁棒性要求,并有很好的跟踪性能.  相似文献   

15.
在单框架控制力矩陀螺(SGCMG)系统构型的分析和评价指标中,构型效益和可控效益分别反映了构型角动量包络和奇点在空间中的分布,可在一定程度上反映构型的性能。然而,构型效益不够直观,而可控效益中包含了角动量包络大小的影响。为此,将构型效益归一化,并从可控效益中去除角动量包络的影响,定义了两个新的构型指标--角动量利用率和非奇异率,对构型进行分析和评价。在此基础上,为了直观反映不同构型对奇点分布的影响,引入奇异可视化方法对不同构型下的奇异角动量曲面分布情况进行了对比分析。分析结果表明,SGCMG个数和构型的对称性是影响构型指标和奇异角动量曲面分布的主要因素。  相似文献   

16.
为弥补水下运载器(AUV,Autonomous Underwater Vehicle)中传统舵面控制机构的低速控制的不足,改善其操纵性能,引入单框架控制力矩陀螺(SGCMG,Single Gimbal Control Moment Gyro)作为控制机构进行姿态稳定与控制.把AUV简化为刚体,加入SGCMG,考虑水下环境的特点,建立基于SGCMG的AUV动力学模型,并仿真分析AUV的动力学、姿态运动、SGCMG的框架运动以及环境之间的相互作用.仿真结果说明:基于SGCMG控制的AUV的姿态机动快速、准确,低速性能理想,为操纵律设计及姿态控制算法研究提供基础.  相似文献   

17.
根据天宫一号目标飞行器的特点及交会对接任务需求,天宫一号目标飞行器选择单框架控制力矩陀螺作为姿态控制执行机构,这是控制力矩陀螺首次在国内航天器上应用.阐述了单框架控制力矩陀螺在天宫一号目标飞行器姿态控制上的应用,主要包括四个方面:构形选择、操纵律设计、角动量卸载、故障诊断与重构.天宫一号目标飞行器控制力矩陀螺系统采用五棱锥构形,其操纵律设计为带零运动的伪逆操纵律,控制力矩陀螺系统具备故障诊断和重构功能.  相似文献   

18.
采用单框架控制力矩陀螺(SGCMG)作为执行机构的小型敏捷卫星在姿态机动过程中存在着奇异问题.本文从SGCMG姿态控制系统整体出发,将奇异问题转化为状态约束的动态控制问题,基于控制变量参数化(CVP)方法,设计了一种用于SGCMG奇异规避的轨迹规划.该算法在实现小型敏捷卫星大角度姿态机动过程无奇异的基础上,将SGCMG框架角转速的最优轨迹通过CVP方法进行分段线性规划.这种规划策略对框架伺服系统的算法设计无复杂要求,仅需要简单的加减速控制,从而节约了星上资源.在轨迹规划实现过程中,考虑了工程实际中的约束条件,可以按照姿态机动任务要求规划出一条综合考虑能量资源和目标精度的最优轨迹.仿真结果表明:该算法实现了姿态参数轨迹和星体角速度轨迹的平缓变化,目标误差在1×10-3量级,星体在机动过程中运行稳定,SGCMG不会出现奇异现象.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号