首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
以高纯氧化铝(Al2O3)和氧化锆(3Y-ZrO2)粉末为原料,在1450℃下通过真空热压烧结制备3Y-ZrO2/Al2O3细晶复相陶瓷致密块料,随后在1500~1650℃温度范围内进行涡轮盘模拟件的超塑挤压。结果显示,3Y-ZrO2/Al2O3陶瓷在1600℃具有最佳挤压性能,最大单位挤压力小于25MPa,最大压头速率达到0.14mm.min-1,成形件质量良好,无明显缺陷。与变形前相比,尽管材料晶粒明显粗化,但是致密度有很大提高,断口SEM显示主要以穿晶断裂方式为主,所以成形件的弯曲强度、断裂韧度和维氏硬度并没有出现大的变化,甚至盘片部位还有所提高,分别由变形前的573MPa,7.1MPa.m1/2和17.7GPa提高到617MPa,8.1 MPa.m1/2和18.8GPa。  相似文献   

2.
SiC_f/SiC陶瓷基复合材料是航空发动机热结构部件的关键材料。基于国产KD-II碳化硅纤维,利用反应熔渗工艺制备了高致密的SiC_f/SiC复合材料,研究了其微观结构、常温/高温力学性能、热物理性能和高温长时氧化稳定性。反应熔渗制备的SiC_f/SiC显气孔率仅为1.6%,室温弯曲强度为(521±89)MPa,1200℃高温弯曲强度为(576±22)MPa,呈非脆性断裂特征,具有优异的高温力学稳定性。厚度方向常温热导率高达41.7W/(m·K),1300℃热导率为18.9W/(m·K)。SiC_f/SiC复合材料经1200℃氧化1000h仍保持非脆性断裂特征,弯曲强度为(360±54)MPa,仅下降19%,仍保持非脆性断裂特征。反应烧结制备的SiC_f/SiC复合材料具备优异的耐高温抗氧化性能,有望满足航空发动机热端部件对SiC_f/SiC陶瓷基复合材料的应用需求。  相似文献   

3.
采用微波烧结法制备了MoSi2和10vol%SiC/MoSi2纳米复合陶瓷。通过SiC预加热体的混合式加热法和合理的保温结构设计,实现了MoSi2低温阶段的快速升温,提高了温度均匀性。密度和力学性能测试结果表明,1 450℃保温60 min烧结工艺下,MoSi2试样的相对密度达到93.4%,断裂韧度4.5 MPa.m1/2,维氏硬度为10.53 GPa,弯曲强度为186 MPa。10vol%SiC/MoSi2试样尽管相对密度下降为90.3%,但各项力学性能均优于MoSi2试样。相比1 650℃热压烧结,微波烧结温度降低了200℃,MoSi2和SiC/MoSi2试样致密性有所下降,但力学性能有较大提高,尤其是MoSi2试样。断口扫描分析表明,微波烧结试样相对热压烧结试样基体晶粒更细,孔隙细小且分布均匀;SiC/MoSi2试样微波烧结的晶粒细化效果不如MoSi2明显。  相似文献   

4.
采用包覆法制备W-5%(质量分数)Re复合粉末,采用气氛保护等离子喷涂成形技术制备某实验型固体火箭发动机喷管(Solid Rocket Motor,SRM),研究2300 ℃真空烧结时喷管致密度、组织结构及显微硬度、抗拉强度、压缩强度等性能随烧结时间的变化规律.研究表明:喷涂成形件为典型的柱状晶层片结构,粒子层片结合部位存在较多孔隙及微观缝隙,成形件致密度为87.5%,其显微硬度、抗拉强度、压缩强度分别为321.8 HV0.025,57.9 MPa及390.2MPa.随着真空烧结时间由2h延长至6h及8h,W-Re合金逐渐由定向凝固柱状晶层片结构转化为颗粒状结构,致密度及力学性能均随之提高.其中经8h烧结处理后,W-Re合金致密度、显微硬度、抗拉强度、压缩强度及屈服强度分别增加至98.6%,529.7 HV0.025,384.7 MPa,1466.5 MPa及879.6 MPa.由于Re元素可提高W-Re合金的再结晶温度,有效细化晶粒,显著提高合金的程度及塑性,等离子喷涂成形W-Re合金经真空烧结后可观察到明显的Re效应.  相似文献   

5.
采用原位生成钡长石为烧结助剂,研究BAS/SiC复相陶瓷的低温无压液相烧结工艺,制备高致密度的陶瓷材料。通过XRD、SEM及力学试验机等研究烧结温度、BAS含量对复相碳化硅陶瓷的致密化、组织结构及力学性能的影响。结果表明:在1800℃温度下原位生成了BAS相,运用无压液相烧结法制备出了密度达到3.2 g/cm~3的BAS/SiC复相陶瓷;陶瓷中BAS以六方结构析出、SiC颗粒均匀分布;烧结温度不宜超过1800℃,温度过高将促使碳化硅颗粒长大,损伤陶瓷材料抗弯强度和断裂韧度;当复相BAS/SiC陶瓷中BAS质量分数为30%时,弯曲强度达到413 MPa,模量达到210 GPa,断裂韧度达到5.03 MPa·m~(1/2)。  相似文献   

6.
对E51环氧树脂改性双酚A型氰酸酯(BADCy)体系的力学性能及热性能进行了研究,发现当E51环氧树脂的质量含量为5%时,改性体系的弯曲强度和冲击强度分别由原来的95.6MPa和9.24kJ/m2提高到了117.8MPa和12.6kJ/m2,而热变形温度仅下降8℃。以该改性体系为基体制作的M40J复合材料,其弯曲强度、模量和剪切强度分别高达:1270MPa,172GPa,68 9MPa。消泡剂BYK141能提高M40J/BADCy复合材料的力学性能,层间剪切强度可提高到77.1MPa。M40J/BADCy复合材料还具有良好的耐环境能力,是一种理想的航空航天结构材料。  相似文献   

7.
针对航空空心叶片氧化铝基陶瓷铸型高温性能较差的问题,研究了不同浸渍材料对氧化铝基陶瓷铸型高温性能的影响规律。结果表明:未经强化处理的陶瓷铸型力学性能较差,高温(1 500℃)强度不足0.5MPa,室温(20℃)强度不足10MPa。经硅溶胶、硅酸乙酯水解液、YCl3溶液以及MgCl2溶液4种不同浸渍液强化处理后陶瓷铸型力学性能有不同程度的提高,其中YCl3溶液以及MgCl2溶液强化效果不理想,陶瓷铸型力学性能没有明显改善,且MgCl2溶液浸渍强化后陶瓷铸型存在较大的体积膨胀,不能满足使用要求;硅溶胶、硅酸乙酯水解液浸渍强化可显著改善陶瓷铸型的高温性能,硅溶胶强化处理后,陶瓷铸型1 500℃高温强度可达10MPa左右,满足空心涡轮叶片定向凝固过程中对铸型高温强度的要求。通过复合浸渍的方法制造了一体化陶瓷铸型并成功浇铸了空心涡轮叶片。  相似文献   

8.
以自制的聚硼硅氮烷(P-SiBCN)为基体聚合物利用前驱体浸渍裂解技术(PIP)制备了二维碳纤维增强SiBCN陶瓷基复合材料,并对其力学性能进行了初步研究.经8次浸渍-裂解,所得复合材料室温弯曲强度为334 MPa,800℃/氩气条件下弯曲强度367 MPa.该复合材料未经抗氧化防护处理情况下,800℃静态空气中氧化3h后,强度保留率约为60%.  相似文献   

9.
采用粘结剂喷射成形与粉末烧结技术相结合制备多孔Inconel 625合金制品,研究了烧结温度对多孔试样的孔隙率、气孔特征、微观结构、烧结颈和拉伸性能的影响。首先采用粘结剂喷射成形技术制备生坯,然后进行脱脂烧结得到多孔试样,通过光学显微镜、扫描电镜对金相和拉伸断口形貌进行表征,对气孔特征、微观结构和烧结行为进行分析,利用阿基米德排水法和拉伸试验分别对孔隙率和力学性能进行表征。试验结果表明,烧结温度由1150℃升高至1280℃,烧结制品的孔隙率由24.8%降低至8.63%,抗拉强度由316 MPa提高至515 MPa,在1250℃烧结时可获得最佳综合性能,孔隙率为17.16%,拉伸强度达到451 MPa。该方法为多孔材料的制备提供了新思路,并为粘结剂喷射成形Inconel 625多孔材料,烧结温度对孔隙结构和力学性能的影响规律提供了参考。  相似文献   

10.
选择Nb作为添加剂,在1500~2000℃热压烧结制备了ZrN-Nb复合材料。研究烧结温度和添加剂对ZrN-Nb复合材料的组织结构及力学性能的影响规律。Nb的添加提高了复合材料致密度,1600℃烧结的ZrN-5%(原子分数)Nb复合材料,其致密度达到98.5%。通过XRD和晶格常数的测量发现,当烧结温度改变时,材料的结构也随之改变,这可能是由于ZrN-Nb复合材料形成了(Zr,Nb)N固溶体,提高了物质扩散速率进而促进烧结致密化,同时在非化学计量的(Zr,Nb)N1-x的形成中,释放出少量的氮可减少试样中闭气孔的形成,这也有利于ZrN-Nb复合材料形成高致密度。加入Nb后材料的致密度提高,其维氏硬度、弹性模量、断裂韧性和抗弯强度都有不同程度的提升。1600℃烧结的ZrN-Nb复合材料的弹性模量、抗弯强度、断裂韧度和维氏硬度依次达到了238 GPa,463.3 MPa,7.0 MPa·m1/2和10.7 GPa。  相似文献   

11.
PICA-X的制备及其炭化前后性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用不同浓度热塑性酚醛树脂溶液浸渍莫来石纤维毡,经过溶胶-凝胶反应和常压干燥后,制备出酚醛浸渍陶瓷烧蚀体(PICA-X,0.45~0.50 g/cm~3),后研究了其炭化前后微观形貌、力学、隔热及抗氧化性能。结果表明:PICA-X具有莫来石纤维增强酚醛气凝胶复合结构,其弯曲强度为26.7~34.0 MPa,热导率为36~40 m W/(m·K)。经过1 000℃炭化后,C-PICA-X的弯曲强度为13.9~14.5 MPa,热导率为41~45m W/(m·K);PICA-X炭化前后均表现出较好的抗氧化性能。  相似文献   

12.
郭英奎 《宇航材料工艺》2000,30(2):22-24,47
采用热压 (HP)法制备了不同烧结温度下Al2 O3—WC复合陶瓷材料 ,通过单边切口梁 (SENB)法和三点弯曲等力学性能方法测出了室温下该材料的力学性能 ,对Al2 O3—WC复合陶瓷表面的摩擦磨损特性进行了试验研究。结果表明 ,Al2 O3—WC复合陶瓷在 (16 0 0± 10 )℃、2 5MPa下具有较优良的力学性能和较好的耐磨性 ,并且其耐磨性与抗弯强度和断裂韧性的变化趋势相同 ,与弹性模量和硬度无单调依赖关系。  相似文献   

13.
针对短时高温抗氧化的具体环境,采用先驱体转化工艺制备2D Cf/SiC-Si复合材料.首先考察首周期裂解温度对2D Cf/SiC-Si材料力学性能的影响,结果表明,首周期采用1200℃裂解,所制备的2D Cf/SiC-Si复合材料界面结合较好,弯曲强度和断裂韧性分别达到305.4MPa和15.7 MPa·m1/2.在此基础上研究了Si粉含量对材料性能的影响.结果表明,随着Si含量的增加,2D Cf/SiC-Si材料的力学性能稍有降低,而抗氧化性能明显提高,主要原因在于材料中游离碳含量的降低和Si氧化后生成的具有封填裂纹和隔氧作用的SiO2膜.  相似文献   

14.
以中间相沥青添加55%(质量分数,下同)的Si粉混合物为原料,制备了含Si的炭泡沫模板。在高温反应烧结炉中,氩气气氛下1500℃保温1~6h,结合反应烧结工艺制备了碳化硅多孔陶瓷。利用扫描电子显微镜(SEM)和X射线衍射分析仪(XRD)对碳化硅多孔陶瓷的微观形貌、物相组成进行了观察,并对熔融Si与C的反应机理进行了探讨。结果表明:碳化硅多孔陶瓷的微观结构与炭泡沫模板的微观结构一致,烧结温度1500℃下,随着保温时间的延长,多孔陶瓷的弯曲强度先增大后减小,而孔隙率先减小后增大;在保温4h的条件下制备的碳化硅多孔陶瓷主要由β-SiC相组成,最大弯曲强度为26.2MPa,对应的孔隙率为45%。内部熔融的Si与外部熔融的Si同时与C反应生成SiC,最后两者结合在一起形成致密的SiC多孔陶瓷。  相似文献   

15.
以聚碳硅烷(PCS)、二乙烯基苯(DVB)和SiC微粉为原料制备了2D-Cf/SiC材料,考察了首次裂解温度对材料结构与性能的影响.结果表明,首次裂解温度的提高有助于弱化界面结合,形成良好的界面结构,从而提高材料的力学性能.当裂解温度从1000℃提高到1600℃时,材料的弯曲强度由200.7MPa提高到319.2MPa,剪切强度由16.8MPa提高到29.8MPa,断裂韧度由7.4 MPa·m1/2提高到15.0 MPa·m1/2.  相似文献   

16.
针对液体火箭发动机富氧燃气通道的传统搪瓷涂层在高温、高压、高速燃气冲刷工作环境下存在的开裂和脱落问题,对金属陶瓷复合涂层进行了高温氧化防护技术研究。采用喷涂和真空烧结工艺在高温合金基材表面制备了金属陶瓷复合涂层,对其组织结构、物理特性和高温抗氧化、热震、抗火焰冲刷性能进行了分析和试验。结果表明,金属陶瓷复合涂层通过真空热扩散形成了多孔组织,在1000℃氧化和冷热交变环境下表现出优异的抗氧化、抗热震性能,能够承受1100℃、1马赫燃气冲刷。  相似文献   

17.
采用热压烧结与高压凝固分别制备了不同压力下Al_2O_3/Al-10Si复合材料,研究了高压对Al_2O_3/Al-10Si复合材料的组织演变规律及力学性能的影响。结果表明,高压凝固Al_2O_3/Al-10Si复合材料由α相,β相和Al_2O_3强化相组成,其中α相呈胞状,在α相晶界处存在少量粒径约为0.1μm的颗粒状β相;对于不同压力下制备的复合材料性能研究发现,凝固压力增加,α相中Si的固溶度增加,显微硬度及拉伸强度也随之提高,显微硬度由热压烧结时的55.3 HV,增加到了5 GPa时的128.1 HV,提高了133%,拉伸强度由热压烧结时的126 MPa,增加到了5 GPa时的702 MPa,这是由于高压导致α相中Si固溶度增加,形成了固溶强化。  相似文献   

18.
二维C/C复合材料高温力学、热物理性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
研究了二维C/C(2D -C/C)复合材料在高温下层剪强度、弯曲强度和模量、热导率和线膨胀系数的变化规律。结果表明 ,所制得的 2D -C/C复合材料的层剪强度随温度的升高变化不大、弯曲强度随测试温度的升高而增加 ;2 0 0 0℃的层剪强度、弯曲强度分别达到 1 4 .8MPa和 2 2 7.4MPa ,较室温分别提高了9.6 %和 6 0 %。弯曲模量在 1 0 0 0℃时增加到 39.4GPa ,在 2 0 0 0℃则下降 ,低于室温数值。 2D -C/C复合材料的热导率、线膨胀系数在z向和x -y向都具有明显的各向异性。未石墨化 2D -C/C复合材料 2 0 0℃的z向热导率是 4 .4 1W / (m·K) ,且随温度的升高而增加 ;而石墨化 2D -C/C复合材料 2 0 0℃的z向、x -y向热导率分别是 1 8.0 2W / (m·K)和 73.2 9W / (m·K) ,随温度的升高而下降。 2D -C/C复合材料在z向的线膨胀系数较大 ,80 0℃以内在 8× 1 0 - 6 /K~ 1 0× 1 0 - 6 /K之间 ;而在x -y向线膨胀系数在 80 0℃以内都很小 ,基本上接近于零  相似文献   

19.
在碳化硅(SiC)纤维中引进金属元素钛,可以制得性能优异的含钛碳化硅(Si_Ti-C-O)纤维。该纤维是由聚碳硅烷(PC)与Ti(OBu)_4加热反应制得先驱体——含钛聚碳硅烷(PTC),经纺丝、高温烧结而成。该纤维抗拉强度可达1.6~2.0GPa,抗拉模量150GPa。与SiC纤维相比,Si-Ti-C-O纤维具有更好的高温氧化性及与金属复合性能。  相似文献   

20.
为提高粉末合金材料轮盘应力集中结构的缺口疲劳性能,采用铸钢弹丸、陶瓷弹丸和复合喷丸的方法对粉末合金缺口旋转弯曲疲劳试样进行喷丸强化,通过白光干涉表面形貌分析、配合电化学腐蚀的X射线衍射残余应力场分析、显微硬度梯度研究评价喷丸强化层状态;采用高温旋转弯曲缺口(结构应力集中系数Kt=1.7)疲劳寿命进行对比分析。结果表明,喷丸强化在FGH95合金表面形成强化层:表面粗糙度Ra=0.9~1.5μm,Kurtosis值R_(ku)接近3的表面轮廓;表面压应力在–800~–1150MPa,压应力场深度达到120~250μm;相比于基体硬度的480~510HV_(0.2),喷丸后表面硬度上升到575~625HV_(0.2),硬化层深度达到175~250μm。采用首次喷铸钢丸大强度、第二次喷陶瓷丸小强度的二次喷丸工艺方法时,表层残余压应力场数值大,表面硬化程度高且硬化层深度大,表面粗糙度较小且弹坑底部圆滑,疲劳强化效果最佳,550MPa/650℃中值疲劳寿命估计量较原始提高20倍以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号