首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
透明导电氧化物薄膜被广泛应用于太阳能电池、平板显示器以及透明视窗等制备中,成为不可或缺的一类薄膜。综述透明导电氧化物薄膜的发展现状和发展趋势,阐述透明导电氧化物薄膜的导电机理和载流子散射机制,系统概括出材料体系选择原则。化学计量比的氧化物是不导电的,通过在薄膜中引入缺陷,包括氧空位、间隙原子或者外来杂质等,在禁带中形成缺陷能级,从而改变氧化物薄膜的导电性能,形成透明导电氧化物。根据掺杂离子的不同,即受主掺杂离子和施主掺杂离子,透明导电氧化物包括N型和P型半导体两种。在这种由于缺陷的引入而导电的透明氧化物薄膜中,载流子散射主要包括晶界散射、声子散射、杂质离子散射和孪晶界散射四种,其中晶界散射和杂质离子散射占主导。进一步地,重点介绍In2O3、SnO2和ZnO基掺杂透明导电氧化物薄膜的基本性能及应用。In2O3基透明导电氧化物由于其在制备低电阻率薄膜和半导体加工方面的优势,成为制作透明电极的主要材料,而SnO2和ZnO基透明导电氧化物由于成本低廉,在未来替代In2O3基透明导电氧化物在透明电极制备方面具有巨大的潜力。此外,结合多功能电子器件的发展,提出延展性能好的氧化物/金属/氧化物三明治结构的透明导电氧化物薄膜是将来的发展方向和研究重点。  相似文献   

2.
透明导电氧化物薄膜已在液晶显示器、太阳能电池、电致变色窗、气体传感器、高层建筑物的幕墙玻璃、飞机和高速列车导热玻璃(防冰除雾)等领域得到广泛应用。为了制备高透光性、高导电性的氧化铟锡(ITO)透明导电氧化物薄膜,一般采用两种途径:高温制备方法直接沉积出结晶态薄膜;室温下沉积出非晶薄膜后再进行热处理使其晶化。对于不耐高温的基底材料,研究快速热处理晶化方法具有重要的指导意义。该方法既能保证ITO薄膜的使用要求,又能降低晶化方法对基底产生的影响。根据不同的应用背景与使用要求,选择合适的制备方法与晶化方法,是获得高透光性、高导电性薄膜的关键。本文综述了目前国内外对ITO透明导电氧化物薄膜晶化方法的研究进展。通过对比不同的薄膜晶化方法的机理和优缺点,指出了红外晶化法、激光晶化法、闪光灯晶化法可以实现薄膜快速结晶。并且,采用上述方法处理,过程中基底温度低于薄膜温度,有望取代目前商业生产中使用的传统炉式晶化法,能够提高生产效率、节约生产成本、获得高质量、高性能的透明导电氧化物薄膜,适用范围更广。  相似文献   

3.
阐述了研究电磁屏蔽材料的重要性。综述了表层导电型、填充复合型、本征型导电高分子、导电织物、透明导电薄膜等电磁屏蔽材料的性能及特点,简要阐述了电磁屏蔽材料的发展趋势。  相似文献   

4.
作为一种功能薄膜,透明导电氧化物(TCO)薄膜在飞行器的抗原子氧(AO)涂层和太阳能电池领域有着巨大的应用价值。ZnO:Al(ZAO)和In2O3:Sn(ITO)薄膜是目前研究和应用最广泛的TCO。本文对ITO薄膜和ZAO薄膜进行了不同通量的AO辐照。通过对辐照前后样品的X射线衍射、扫描电镜及霍耳效应的表征及测试,研究了AO辐照对这两种TCO薄膜的结构、性能及电学特性的影响。研究表明AO辐照对ZAO薄膜表面有明显的侵蚀作用,但对其结构和导电性能没有明显影响。对于ITO薄膜,随着AO通量的增大,其载流子浓度逐渐下降从而导致了电阻率的提高,电阻率的最大变化达到了21.7%。  相似文献   

5.
一、前言 利用非晶态薄膜制做敏感元件用于传感器或制做精密电阻器用于微电子线路,具有电阻率大、电阻温度系数低、抗腐蚀、耐磨、体积小和一体化等优点。非晶态材料的稳定性是此材料技术应用上所需解决的问题之一。从对Ni-Si-B非晶薄膜的研制和测试中发现,薄膜的物理性质及稳定性除与溅射条件,退火处理有关外,还与薄膜的厚度有关。一定厚度范围的薄膜有最小的电阻温度系数(TCR)和最好的稳定性。从薄膜结构驰豫激活能的测定中也得到一定厚度范围的薄膜对应较大的激活能(Ea)。  相似文献   

6.
石墨烯是新一代的纳米级碳材料,具有优异的机械、导电性能以及其他的功能性能,是制备聚合物导电复合材料的理想填充物.对石墨烯的常用制备方法进行比较并分析其优点与不足,介绍了石墨烯及其复合材料的导电及机械性能,并对石墨烯及其聚合物导电复合材料的应用研究进展进行了系统的综述.最后,对该领域所存在的问题进行了总结,并展望了其发展趋势.  相似文献   

7.
非晶态材料     
非晶态材料是当前世界各国都大力研究和开发的一大类新型材料。自一九六○年美国科学家杜威兹首次制备出非晶态合金以来,据不完全统计已有23种纯金属和半导体、113种合金和化合物制成了非晶态材料,从而开辟了一个种类繁多的材料领域。这类材料性能特殊、应用广泛、已从科研走上生产,具有重要的技术和经济价值,因而在国际上被誉为二十世纪后期金属材料领域中的一次革命。 非晶态材料在微观结构、材料成份、生产工艺和技术特性等方面,都同常见的金属材料有根本区别。以往的金属和合金都是结晶态材料,即都具有晶粒、晶界等结构,材料内部的原子呈现周期性和平移对称性等规则排列。非晶态合金则恰恰相反,不仅晶粒、晶界等不复存在,而且原子排列也是混  相似文献   

8.
前言 非晶体合金具有特殊的组织结构,既有金属的性质、又有玻璃状的那种无定形的非晶态组织。其结构特点是组织均匀,不存在晶态金属的晶界、孪品等局部缺陷。由于结构的特殊性决定了它的一系列优异特性,因而最近几年得到了很快的发展。从精密合金  相似文献   

9.
采用射频反应溅射制备SiNx薄膜,作为以Ag膜为功能层的D/M/D结构透明导电膜中的电介质膜,并研究射频功率、气压以及N2流量对SiNx薄膜光学常数的影响。结果表明,SiNx薄膜具有非晶态结构,光学常数在300~2500nm波长范围内符合正常色散关系。椭偏测试及Cauchy模型拟合结果表明,折射率随功率、气压以及N2流量升高而降低,SiNx光学常数最佳的工艺条件为功率300W,气压0.16Pa,N2与Ar流量比例1∶1,此时薄膜折射率为2.02,消光系数为0,最接近具有化学计量比的Si3N4薄膜的光学常数。按此工艺制备的Si Nx膜在优化厚度为44nm的条件下作为20nm厚度Ag膜的电介质膜,当只有表面SiNx膜时,Ag膜透光率由29.17%提高至55.01%,当Ag膜上下均制备SiNx膜时,透光率进一步提高至66.12%。  相似文献   

10.
超洁净环境中三维非晶态凝固研究   总被引:1,自引:0,他引:1  
采用超洁净环境对 Zr41 Ti14 Ni10Cu12.5 Be22.5 合金进行电弧熔炼,在 1 0 0~ 1 50 K/s的慢速冷却条件下,成功地制备出厚度大于 1 0 mm的非晶合金。这是一种在超洁净环境中的部分无容器凝固,可以获得较大过冷度。随着熔炼过程中氧含量的增多,由于合金表面被氧化,氧化物作为异质晶核强烈促使液态合金结晶。利用红外测温方法快速检测了合金在凝固过程中非晶的形成。通过分析润湿角因子 f(θ)对合金形核与结晶过程的影响,获得了非晶态凝固所需临界冷却速率 Rc 与润湿角θ之间的关系。  相似文献   

11.
用高速电弧喷涂技术(HVAS)制备FeCrAl涂层,测试涂层在800℃的氧化性能,研究涂层在喷涂态和氧化后的组织结构.结果表明,由于冷却速率极快,FeCrAl涂层中形成比较多的Fe-Cr非晶态相,还有少量的Cr1.3Fe0.7O3和体心立方晶格的Fe-Cr固溶体,喷涂过程中Al的氧化比较严重.FeCrAl涂层的抗高温氧化性明显高于12Cr1MoV钢,接近于T91钢,涂层具有优异的抗氧化性一方面是由于层片间形成保护性的Cr氧化膜,阻止进一步氧化,也与含有较多抗氧化性好的非晶态相有关.高温氧化后,涂层中部分非晶态相晶化,转变为Fe-Cr晶体相.  相似文献   

12.
为制备出导电性能优良的有机透明导电涂层,需要把具有导电性的碳纳米管在树脂中组装成一体化导电结构网络.本文运用可以在树脂中自组装的导电聚乙撑二氧噻吩来实现碳纳米管自组装的方法,合成出了导电聚乙撑二氧噻吩纳米薄膜均匀覆盖的导电聚乙撑二氧噻吩/碳纳米管复合物,并运用透射电镜(TEM)、傅立叶红外光谱(FTIR)和四探针法对其进行了分析与表征,结果发现在碳纳米管含量为1%时,纳米复合物的导电率可达到100S/cm,而碳纳米管和聚乙撑二氧噻吩的导电率分别为10.4 S/cm和14.3S/cm.  相似文献   

13.
高速电弧喷涂FeCrAl涂层组织结构及抗高温氧化性能研究   总被引:1,自引:0,他引:1  
用高速电弧喷涂技术(HVAS)制备FeCrA l涂层,测试涂层在800℃的氧化性能,研究涂层在喷涂态和氧化后的组织结构。结果表明,由于冷却速率极快,FeCrA l涂层中形成比较多的Fe-Cr非晶态相,还有少量的Cr1.3Fe0.7O3和体心立方晶格的Fe-Cr固溶体,喷涂过程中A l的氧化比较严重。FeCrA l涂层的抗高温氧化性明显高于12Cr1MoV钢,接近于T91钢,涂层具有优异的抗氧化性一方面是由于层片间形成保护性的Cr氧化膜,阻止进一步氧化,也与含有较多抗氧化性好的非晶态相有关。高温氧化后,涂层中部分非晶态相晶化,转变为Fe-Cr晶体相。  相似文献   

14.
采用熔体旋甩法制备了快速凝固Al87Ni7Cu3Nd3金属玻璃薄带,并以连续加热和等温加热两种模式对非晶态薄带进行退火处理。采用差示扫描量热分析、X 射线衍射分析和高分辨率电镜分析等手段研究了非晶态薄带的晶化过程,对非晶态和退火态薄带的微观结构进行了细致检测,研究重点放在形成α Al纳米晶体颗粒的初始晶化行为,以便了解Al基纳米晶/非晶复合材料的结构特征。结果表明,快速凝固Al87Ni7Cu3Nd3合金薄带为单一的非晶态结构。非晶态薄带的晶化过程包括两个主要转变:α Al晶体从非晶基体中析出的初始晶化以及有Al3Ni,Al11Nd3和Al8Cu3Nd形成的第二次晶化过程。初始晶化的速率控制过程可能是铝自扩散,而第二次晶化过程则受控于溶质原子Ni,Nd和Cu的扩散。90~160℃等温退火薄带由α Al晶体相加残余非晶相的两相组织构成,随着等温温度的提高,初始晶化过程速率增大,而随着退火时间的延长,α Al晶体相的相对含量增大。110℃等温热暴露130min退火薄带的显微组织可以描述为,在非晶基体上均匀弥散分布着体积分数约20%的α Al晶体纳米(10nm)颗粒。  相似文献   

15.
铁基Fe-Cr-Mo-C-B非晶合金具有高耐腐蚀性能和高硬度的特点,因而非常适合应用于表面及涂层材料,其较高的非晶形成能力使得采用激光表面处理技术获得理想非晶表面成为可能。采用激光表面熔化技术成功实现了Fe-CrMo-C-B合金的表面非晶化,研究了激光表面熔化工艺参数对合金表面非晶化的影响并建立了最佳工艺。发现合金经激光表面熔化处理后形成了从表面到基体的非晶层、非晶-晶体复合层和晶态基体的多层次结构,并探讨了其形成机理及与腐蚀行为和硬度的相关性。研究表明:Fe-Cr-Mo-C-B合金的硬度和腐蚀行为等表面性能显著依赖于其微观结构,激光表面熔化所获得的非晶表层表现出高硬度和优异的耐腐蚀性能。研究结果也为采用激光表面熔覆技术在其他金属材料表面制备具有实际应用价值的耐腐蚀、耐磨损Fe-Cr-Mo-C-B非晶合金涂层奠定了一定的理论和实验基础。  相似文献   

16.
正近日,在北京市科委纳米科技专项支持下,清华大学成功研制出高性能碳纳米管导线,并开展了脑起搏器电极、碳纳米管导线原型直流电机应用研究。碳纳米管具有轻质、高强以及导电、导热性能优异等特点,有望取代传统金属导线在航空航天、生物医疗等领域得到应用。常规碳纳米管制备方法会导致金属纳米管与半导体纳米管的混合,其中半导体属性约占2/3,造成碳纳米管导线电导率比铜导线低两个数  相似文献   

17.
导电性高分子复合材料界面特征与功能特性的关系   总被引:3,自引:0,他引:3  
高分子材料通常以其优异的电绝缘性能而著称,但将各种金属纤维、碳纤维、炭黑、金属盐等与高聚物经过分散复合、层积复合、表面形成导电薄膜等处理,却能制得具有良好导电性的高分子复合材料。本文简要介绍了导电性高分子复合材料界面特征与功能特性的关系。  相似文献   

18.
1 透明导电膜本成果应用光学薄膜干涉和半导体能带理论 ,用氧化铟与氧化锡以科学合理比例混合作为膜料 ,并以电子束轰击热蒸发真空镀膜而成的透明导电膜。主要技术指标 :可见光透射率达 92 % ;方电阻小于 30Ω ;激光的透射率为 90 % ;能承受功率密度为 0 .8MW的激光器的破坏 ;在 - 40℃环境下 ,施加2 8V电压 ,经过 5min~ 10min ,可升温到 5℃以上 ,其机械理化性能满足国家标准要求。该产品能消除光学观测窗口的霜与雾 ,可作为液晶电子指示器的透明导电元件。本成果可用于军事战车 ,也可用于民品上 ,如在医疗喉镜上使用 ,效果良好…  相似文献   

19.
大尺寸及异型锗窗高效电火花线切割技术   总被引:1,自引:1,他引:0  
 研究了N型锗半导体电火花加工时所体现的单向导通性及特殊电特性,建立了电火花加工模型,分别用二极管、可变电阻、稳压管、电阻等器件表征了锗半导体与进电端材料的接触势垒、极间体电阻、介质放电维持电压及工作液电阻。设计了锗半导体电火花线切割专用夹具,采用锗半导体表面涂覆碳浆并用石墨块进电的方式以降低接触势垒、接触电阻,对进电接触点采用吹气方式减少电化学反应导致的不导电钝化膜的产生,保障加工的延续。最后对电阻率为22.3 Ω·cm,高度为170 mm的N型锗进行了电火花线切割,切割效率大于100 mm2/min,并采用数控的方法切割出异型锗窗。检测了放电波形,分析了锗半导体电火花线切割的特性。  相似文献   

20.
考虑到纤维增强树脂基复合材料会在服役过程中因受冲击、压缩以及疲劳等因素的作用而发生损伤,基于碳纳米管薄膜优异的力电响应特性开发了一种具有在线损伤监测能力的自感知复合材料。碳纳米管可在薄膜中形成导电网络,复合材料损伤会破坏导电通路,使碳纳米管薄膜的电阻大幅度增加。通过测量自感知复合材料的边界电压并利用电阻层析成像法对碳纳米管薄膜内电导率的分布变化进行求解/成像,实现了复合材料的在线损伤监测。分别对贯穿孔损伤和I型层间断裂损伤模式进行了研究,结果表明所制备的自感知复合材料对这两种损伤模式均可实现损伤定位及图像化显示,对于贯穿孔型损伤模式可实现对面积占比0.038%的损伤进行在线监测,定位精度可达毫米级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号