首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 605 毫秒
1.
针对航空发动机涡轮叶片的设计流程,开发了涡轮动叶的设计平台。基于气动热力学方法建立了1维性能设计模块;并在研究平面叶栅造型设计方法的基础上,建立了2维气动分析模块,可以实现2维叶型气动性能的快速分析;在实心/冷却叶片参数化设计的基础上,引入多学科可行方法,建立了实心/冷却叶片设计和多学科优化模块。利用所开发的设计平台进行了某型冷却叶片的多学科设计优化,有效提高了该叶片的综合性能,验证了平台的有效性。  相似文献   

2.
涡轮冷却叶片参数化建模及多学科设计优化   总被引:3,自引:2,他引:3  
建立了一个涉及结构、气动、传热、振动、强度和寿命等学科的涡轮冷却叶片多学科设计优化系统, 进行了单孔薄壁冷却叶片的多学科设计优化.提出了单孔薄壁冷却叶片的参数化造型方法, 叶片叶型采用5次多项式构造, 气动与传热为三维耦合分析;叶片体积平均温度与最高温度为优化目标, 强度、振动和寿命等学科相关参数为约束, 模拟退火与序列二次规划组合算法进行叶片参数空间寻优, 在保持冷却气体流量不变的条件下, 优化提高了冷却效果, 降低了叶片材料的性能要求.   相似文献   

3.
涡轮叶片冷却技术的应用和发展   总被引:1,自引:0,他引:1  
针对航空发动机涡轮叶片的工作环境和使用要求,论述了涡轮叶片冷却技术的应用情况,展望了涡轮叶片冷却技术的发展趋势.阐述了研究涡轮叶片冷却技术必须同时重视改革工艺方法,合理的也是可行的做法应是开发高性能耐高温材料和发展新型高效涡轮叶片冷却技术并重,甚至将其合二为一,发展复合结构设计这一新型设计思想;以及对涡轮叶片根据实用要求用多种材料进行复合结构设计,用力学理论分析和强度实验的方法进行材料组合优化、复合结构优化,充分发挥各种材料特长,形成一种任何单一材料所不具备的优异性能涡轮叶片的观点.  相似文献   

4.
涡轮叶片多学科可靠性及稳健设计优化   总被引:6,自引:3,他引:3       下载免费PDF全文
为了得到一种适用于涡轮叶片复杂结构并同时考虑可靠性及稳健性的多学科设计优化方法,将6sig-ma可靠性及稳健设计优化方法与多学科可行方法(MDF)相结合,采用二阶Taylor展开法进行可靠性及稳健性分析,实现了涡轮叶片多学科6sigma可靠性及稳健设计优化。使用Kriging近似模型并不断提高模型精度,解决了多学科可行方法计算量较大的问题。实例分析表明,与确定性多学科设计优化相比,采用该方法得到的涡轮叶片可靠性及稳健性均有大幅度提高,同时设计目标最优,满足工程应用的要求,验证了该方法在工程应用中的可行性。  相似文献   

5.
将反一阶可靠性分析方法与多学科可行方法相结合,提出了一种适用于涡轮叶片复杂结构的可靠性及多学科设计优化方法.在优化过程中使用Kriging近似模型并不断提高模型精度,解决了多学科可行方法反复调用仿真程序进行多学科分析,计算量较大的问题.该方法将可靠性分析与多学科优化过程分离,提高了优化计算效率.以某型涡轮叶片的设计优化为例,对该方法进行了验证并与传统双循环方法进行了对比.结果表明,优化结果满足可靠性的要求,与双循环方法相比优化效率提高63.8%,证明了该方法在工程应用中的可行性和有效性.   相似文献   

6.
基于Kriging模型的涡轮叶片多学科设计优化   总被引:8,自引:4,他引:4  
引入基于Kriging模型的近似技术, 建立了一种三维涡轮叶片的多学科设计优化方法.系统介绍了Kriging近似模型, 采用松散耦合方法考虑叶片各学科之间的耦合关系, 在多学科耦合分析的基础上, 采用多学科可行方法与基于Kriging模型的多学科优化方法分别进行了优化和比较.算例表明, 同等条件下相对于前者, 后者能够在精度无明显损失的情况下更快地收敛到最优解, 使涡轮叶片的各项性能得到明显改善, 证明该优化方法是可行有效的.   相似文献   

7.
航空发动机涡轮叶片的多学科设计优化   总被引:17,自引:10,他引:7  
叙及了多学科设计优化技术在航空发动机涡轮叶片设计中的应用研究,对涡轮叶片多学科设计优化方法进行设计的具体实施过程进行了介绍,讨论了结构、气动、传热、强度、振动和寿命以及优化算法等跨学科之间进行耦合优化设计的理论和方法。文末给出了一计算实例。   相似文献   

8.
为了提高导向叶片的冷却效率,分析了层板导向叶片的外壁厚、冲击距离和扰流柱直径变化对叶片温度分布的影响,结 果表明:随着冲击距离增加,冲击冷却效率降低,叶片表面温度升高;随着层板叶片外层壁厚度增大,外层壁两侧温差逐步增大;随 着扰流柱直径增大,外层壁两侧平均温度呈现先降低后持平的变化趋势,两侧温差保持不变。结合中国铸造工艺设计了层板冷却 涡轮导向叶片,利用CFX软件对设计的导向叶片流动传热进行计算,利用模拟试验对该导向叶片冷却效果进行验证。计算和试验 结果表明:设计的层板冷却导向叶片冷却温降水平较高,温降均值达到燃气入口温度的40%以上,温降水平计算值比试验值低 7.3%,叶片表面温度分布较均匀,叶片冷却结构设计合理。  相似文献   

9.
涡轮叶片冷却设计优化方法研究   总被引:3,自引:1,他引:2  
针对某型发动机高压涡轮工作叶片,采用试验设计方法,通过对内腔边界条件的主效应分析,对涡轮叶片截面温度分布进行优化。同时,对影响叶片内腔不同流动与换热类型的冷却结构元件换热系数的几何参数进行敏度分析。最后通过综合优化,获得在原设计基础上的优化结果。结果表明,该方法可以把原设计的截面最大温差有效降低。另外,通过对涡轮叶片冷却设计优化方法的探索,还获得了影响叶片冷却设计结果的参数关系曲线,该方法及结果可在涡轮叶片冷却设计时参考使用。  相似文献   

10.
针对现有航空发动机涡轮叶片内冷结构的快速改进,在对叶片冷却设计方法集成的基础上,建立了一类冷却叶片的优化模型,并成功将该优化模型应用在航空发动机涡轮叶片设计中。结果表明,在相同冷却空气用量下,叶片表面最高温度降低了72.4℃,叶片温差减小了110.4℃,优化效果明显。同时,将近似技术成功应用到叶片优化设计中,提高了任务分析效率,为现有发动机涡轮叶片快速改进提供了一种有效手段。  相似文献   

11.
多学科设计优化在非常规布局飞机总体设计中的应用   总被引:1,自引:0,他引:1  
胡添元  余雄庆 《航空学报》2011,32(1):117-127
以飞翼布局飞机总体设计为例,展示如何将多学科设计优化(MDO)方法有效地应用于非常规布局飞机总体设计.基于二级优化方法,提出一种飞机总体MDO实施流程.该流程包括系统级优化、子系统级优化(或评估)和多学科模型生成器3个部分.系统级优化的任务是优化全局设计变量,使系统目标最优.子系统级优化涉及的学科包括气动、隐身、结构、...  相似文献   

12.
The design schemes of cooling for the nozzle blades of high-temperature gas turbines are considered. The results of the thermal and hydraulic tests for the cooling systems of the nozzle vanes are presented. The prospective cooling system of the nozzle vanes of low and high pressure turbines is developed and presented. The test results for the vane with proposed design are presented.  相似文献   

13.
静叶角度调节对压气机性能影响的试验研究   总被引:18,自引:2,他引:16  
本文介绍了通过调节一三级轴流压气机各级静叶角度组合,以改善级间匹配关系,从而来提高压气机性能的试验研究方法和过程。试验结果表明,静叶角度的改变对压气机性能有着极为明显的影响。通过试验,找到了该压气机在设计转速下的一组最佳角度匹配。最高绝热效率提高了7.4 个百分点,稳定工作裕度也有了显著的增加。   相似文献   

14.
复合式气冷涡轮导叶综合冷效试验研究   总被引:2,自引:1,他引:2  
介绍了复合式气冷涡轮导叶的冷却效果试验研究。试验结果表明,导叶在宽广的冷气流量比范围内,具有良好的冷却特性,经模化分析,在发动机状态下,叶片中截面相对冷却效果为0.69,达到了设计指标。  相似文献   

15.
本文介绍了一种复台倾斜导叶的玲却结掏形式:叶背区采用冲击冷却形式.前绿和叶盆区采用气膜覆盖冷却技术,尾缘区采用带冲击的扰流柱强化冷却技术;利用热分析软件包对复合倾斜导叶进行了设计计算.井利用冷效试验对复合倾斜导叶的冷却效果进行了验证。结果表明,本文介绍的复台倾斜导叶的冷却结构设计是台理的。  相似文献   

16.
飞机总体优化设计的新进展   总被引:15,自引:4,他引:11  
黄俊  武哲  孙惠中  吴炳麟 《航空学报》2000,21(6):481-487
回顾飞机总体优化设计的传统方法 ,介绍多学科优化方法在飞机设计中的应用状况和最新发展。重点讨论为解决设计变量过多和计算耗费太大问题提出的试验设计和响应面近似法以及带不确定性多学科优化的鲁棒设计方法。提出飞机总体优化设计的一些关键研究领域 :气动—结构、气动—隐身、结构—主动控制等 ,最后展望多学科优化在飞机总体设计中的应用前景  相似文献   

17.
Different multidisciplinary design optimization (MDO) problems are formulated and compared. Two MDO formulations are applied to a sounding rocket in order to optimize the performance of the rocket. In the MDO of the referred vehicle, three disciplines have been considered,which are trajectory, propulsion and aerodynamics. A special design structure matrix is developed to assist data exchange between disciplines. This design process uses response surface method (RSM) for multidisciplinary optimization of the rocket. The RSM is applied to the design in two categories: the propulsion model and the system level. In the propulsion model, RSM deter-mines an approximate mathematical model of the engine output parameters as a function of design variables. In the system level, RSM fits a surface of objective function versus design variables. In the first MDO problem formulation, two design variables are selected to form propulsion discipline. In the second one, three new design variables from geometry are added and finally, an optimization method is applied to the response surface in the system level in order to find the best result. Application of the first developed multidisciplinary design optimization procedure increased accessible altitude (performance index) of the referred sounding rocket by twenty five percents and the second one twenty nine.  相似文献   

18.
白波  李志刚  李军 《航空动力学报》2022,37(5):1042-1053
为有效评估轴向收敛造型对端壁气膜冷却性能的影响,数值研究了不同吹风比下,轴向收敛造型对跨声速燃气涡轮叶栅端壁上游双排离散孔绝热气膜冷却效率的影响。模拟某工业燃气涡轮真实运行工况(进口湍流度为16%、出口马赫数为0.85、出口雷诺数为1.5×106),采用基于“两类热边界条件”模型的壁面传热系数和绝热冷却效率数值预测方法,比较分析了3种吹风比(1.0、2.5、3.5)下,简化平板端壁结构和轴向收敛造型端壁结构的端壁热负荷分布、绝热气膜冷却效率分布和近端壁二次流场结构,以及端壁上游气膜孔射流对叶片表面的二次冷却作用(幻影冷却)。结果表明:轴向收敛造型可以削弱马蹄涡强度,降低端壁热负荷,尤其是叶片肩部区域;轴向收敛造型可以显著增加端壁气膜覆盖范围和绝热气膜冷却效率,尤其在叶片前缘和压力面等难以冷却区域;随吹风比增加,轴向收敛造型对端壁气膜冷却特性的影响效果先增加后减小,在设计吹风比为2.5时,轴向收敛造型对端壁绝热气膜冷却效率的增强效果最显著(增加约35%);轴向收敛造型显著增加叶片前缘和压力面幻影冷却面积,尤其是叶片前缘附近面积增加约100%(设计吹风比下,冷却区域达0.1倍叶高),可有效减小叶片冷却的冷气需求流量。轴对称收敛端壁造型是进一步提高燃气涡轮叶栅端壁绝热气膜冷却效率、减小冷气流量,实现端壁高效冷却布局的有效技术途径。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号