首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper considers the detection of a sinusoidal or chirp signal imbedded in wideband FM interference (as might be generated by some types of active jamming), such that after pulse compression or other integration, the interference can be approximated by a sum of sinusoids of independent phase. The detection probability in such non-Gaussian noise is compared to that for Gaussian noise, with the Gaussian result approached, as required, in the limit that the number of sinusoids in the sum increases without bound. For detection using a comparison of the envelope with a threshold which yields a given false-alarm probability (CFAR detection), the detection probability is improved over the case of Gaussian noise, so that the usual approach basing the design on Gaussian noise would be conservative. Using a threshold determined from the envelope mean, the FM interference yields a lower false-alarm probability than for Gaussian noise, with detection probability only slightly degraded.  相似文献   

2.
为提升高动态低信噪比环境下卫星导航信号的捕获性能,提出了一种基于分数阶傅里叶变换(FrFT)及部分匹配滤波(PMF)的捕获方法。在该方法中,接收机首先利用PMF对接收信号做分段相干积分,随后借助快速傅里叶变换(FFT)对分段积分结果做离散快速FrFT,最后通过检测FrFT输出的峰值完成信号的捕获。由于具有多普勒频率变化率的卫星导航信号在FrFT后呈现能量聚焦特性,所提方法能够显著提高信号的长时间相干积分增益。同时对所提算法的捕获概率、平均捕获时间以及算法复杂度等性能指标进行了理论分析及计算机仿真验证。仿真表明,与传统的PMF-FFT方法相比,所提方法能够通过延长相干积分时间的方式有效提升高动态低信噪比卫星导航信号的捕获概率、降低捕获时间。  相似文献   

3.
汝小虎  柳征  姜文利  黄知涛 《航空学报》2016,37(7):2259-2268
野值检测又称异常值检测,是模式识别、机器智能和知识发现等领域经常面临的一个问题。当出现环境失配,数据信噪比(SNR)发生变化时,测试样本和训练样本所含噪声会有不同方差,以往的野值检测方法在虚警控制方面将会失效。针对这一问题,提出一种基于归一化残差(NR)的野值检测方法。该方法首先根据所需虚警概率和噪声方差变化情况确定野值检测门限,其次基于训练样本计算待考查模式的NR值,再比较NR值与检测门限的相对大小,从而判断待考查模式是否为野值。这一方法所依赖的检测门限对所需虚警率和噪声方差变化具有适应能力,因此可以在变信噪比条件下实现恒虚警(CFAR)野值检测。仿真实验验证了所提方法在虚警控制和野值检测方面的优越性能。  相似文献   

4.
The false-alarm and detection probabilities of a receiver summing M independent outputs of a linear detector are calculated by numerical saddlepoint integration. The saddlepoint approximation is also considered. Both constant-amplitude and Rayleigh-fading signals are treated, and the relative efficiency of the quadratic and the linear detectors for these is calculated for a broad range of values of M . The numerical integration method is the more efficient, the smaller the false-alarm probability or the false-dismissal probability, that is, under just those conditions for which the terms in the Gram-Charlier series oscillate most violently and the series becomes least reliable. The simpler saddlepoint approximation yields values that in those same regions have been found close enough to the exact probabilities to be adequate for most engineering purposes. The larger the number M of samples, the more efficient methods are  相似文献   

5.
近年来,针对弱信号的高灵敏度接收机已逐渐成为国内外的研究热点。加长相干积分时间可以提高信噪比,从而跟踪到更弱的信号。但是,北斗导航接收机跟踪环路并不可以无限加长相干积分时间,相干积分时间的长短和功效还受到卫星导航电文比特跳变的限制。为了消除导航电文比特跳变对相干积分的影响,提出了一种改进的基于最大似然估计的北斗信号位同步方法,完成位同步后再利用先猜后检的方法便可以实现长相干积分。利用软件接收机进行编程设计,仿真结果表明:该长相干积分算法能够稳定可靠地实现对弱信号的跟踪,20ms相干积分环路信噪比约提升12dB,40ms相干积分环路信噪比约提升15dB,80ms相干积分环路信噪比约提升17dB,提高了北斗导航接收机的灵敏度。  相似文献   

6.
An ideal quantum receiver is to detect a coherent narrow-band optical signal in the presence of thermal background radiation. Curves are given both of the average probability of error in a binary communication system transmitting O's (blanks) and 1's (pulses) with equal probabilities, and of the probability of detection for various fixed values of the false-alarm probability.  相似文献   

7.
Two-stage detectors using generalized sign and four-level conditional statistics for signal detection in multiple-range-bin radars are described. The resulting detectors are of constant false-alarm rate (CFAR). Performances are evaluated and compared with singlestage versions. If the a priori probability of either the no-target case or the target-presence case is large (close to 1), a two-stage test can be designed to have the advantage of reducing the average number of samples required without sacrificing detection probability. With the proper choices of parameters, significant improvement in the efficiency can be achieved. Asymptotic relative efficiency of two-stage detectors with respect to single-stage detectors is derived and some numerical results are evaluated.  相似文献   

8.
Frequency-Agile Radar Signal Processing   总被引:1,自引:0,他引:1  
Modern radars may incorporate pulse-to-pulse carrier frequency modulation to increase probability of detection, to reduce Vulnerability to jamming, and to reduce probability of interception. However, if coherent processing is used for clutter rejection, the frequency of N consecutive pulses must be held constant for N-pulse clutter cancellation or Doppler filtering. If M pulses are transmitted during the time the antenna illuminates a target, there are M/N coherently integrated echoes available for noncoherent integration in the computer or the operator's display to further improve the signal-to-noise ratio (SNR). In this paper, analytical and simulation methods are employed to determine the balance between coherent and noncoherent integration that yields the greatest SNR improvement. Attention is focused upon a model using peak selection of fast Fourier transform (FFT) Doppler channels and is compared to a reference model involving only a single Doppler channel. Curves of detectable SNR as a function of M and N are presented for both models.  相似文献   

9.
An algorithm is described for detecting moving optical targets against spatially nonstationary Poisson background and noise. The algorithm has applications in optical detection of objects such as meteors, asteroids, and satellites against a stellar background. A maximum-likelihood approach is used which results in reducing interference from stars. It is shown that by choosing a detection threshold to provide a constant false alarm rate, the resulting algorithm is independent of the signal strength of the target. An analysis of this algorithm is presented, showing the probability of detection for several false-alarm rates  相似文献   

10.
The time at which a received signal crosses a certain level fluctuates in the presence of noise. In this paper, a theoretical formula for the standard deviation of this thresholding time is obtained. The formula is applied to the detection of a pulse perturbed by Gaussian noise. Two practical detection schemes, the peak amplitude estimator and the double differentiator, are theoretically analyzed and compared. Also, a formula is derived which may be used to determine the efficacy of a false-alarm detection system.  相似文献   

11.
Spatially distributed target detection in non-Gaussian clutter   总被引:3,自引:0,他引:3  
Two detection schemes for the detection of a spatially distributed, Doppler-shifted target in non-Gaussian clutter are developed. The non-Gaussian clutter is modeled as a spherically invariant random vector (SIRV) distribution. For the first detector, called the non-scatterer density dependent generalized likelihood ratio test (NSDD-GLRT), the detector takes the form of a sum of logarithms of identical functions of data from each individual range cell. It is shown under the clutter only hypothesis, that the detection statistic has the chi-square distribution so that the detector threshold is easily calculated for a given probability of false alarm PF. The detection probability PD is shown to be only a function of the signal-to-clutter power ratio (S/C)opt of the matched filter, the number of pulses N, the number of target range resolution cells J, the spikiness of the clutter determined by a parameter of an assumed underlying mixing distribution, and PF. For representative examples, it is shown that as N, J, or the clutter spikiness increases, detection performance improves. A second detector is developed which incorporates a priori knowledge of the spatial scatterer density. This detector is called the scatterer density dependent GLRT (SDD-GLRT) and is shown for a representative case to improve significantly the detection performance of a sparsely distributed target relative to the performance of the NSDD-GLRT and to be robust for a moderate mismatch of the expected number of scatterers. For both the NSDD-GLRT and SDD-GLRT, the detectors have the constant false-alarm rate (CFAR) property that PF is independent of the underlying mixing distribution of the clutter, the clutter covariance matrix, and the steering vector of the desired signal  相似文献   

12.
The detection of a broadband plane wave in an isotropic noise field is considered. The detection statistic used is the cross correlation of the sampled output from two sensors where the sampling rate equals the Nyquist rate and the time delay is an integer multiple of the sampling period. By restricting the number of points in the cross correlation to be even, the detection and false-alarm probbilities are obtained in closed form. Numerical results are presented for several special cases.  相似文献   

13.
Radar detection in clutter   总被引:2,自引:0,他引:2  
Clutter is defined as any unwanted radar return. The presence of clutter in a range/Doppler cell complicates the detection of a target return signal in that cell. In order to quantify the effect of clutter on the probability of detection, we must first specify sets of models suitable for representing the clutter and target. The simplest and most common model for clutter is based on the gamma density. We include two additional models, the NCG and NCGG clutter models for low grazing angles. They are motivated by physical arguments, the latter of which can accommodate the well-known phenomenon of speckle. Using one of these models for clutter together with one of several models for targets, we determine, in a range/Doppler cell, expressions for probabilities of detection of a target in the presence of clutter. It is important to control the probability of false alarms. The presence of clutter in a cell necessitates an increase in the detection threshold setting in order to control false alarms, thus lowering the probability of detection. If the clutter level is unknown, then we need to take measurements of the clutter and use it to adjust the threshold. The more clutter samples we take, the better the estimate of the clutter level and the less is the resulting detection loss. Using the expressions for the probability of detection in clutter, we can quantify the detection loss for a pair of commonly used constant false-alarm rate (CFAR) techniques and investigate how the loss varies with different parameter values, especially with regard to the number of clutter samples taken to estimate the clutter level.  相似文献   

14.
A low probability of intercept (LPI), or low probability of detection (LPD) communication technique known as cyclic code shift keying (CCSK) is described. We discuss the basic concepts of CCSK and describe a system based on the use of random or pseudorandom codes for biphase modulation. We use simulation to show that the bit error rate (BER) for CCSK can be closely estimated by using existing equations that apply to M-ary orthogonal signaling (MOS). Also, we show that significantly fewer computations are required for CCSK than for MOS when the number of bits per symbol is the same. We show that using biphase modulation results in waveforms that have a large time-bandwidth product and very low input signal-to-noise ratio (SNR) and thus inherently have an LPI by a radiometer. We evaluate detection by a radiometer and show that LPI can be achieved by using codes of lengths greater than about 2/sup 12/ (i.e., by transmitting more than about 12 bits per symbol). Results illustrate the effect that the CCSK symbol length and error probability, and the radiometer integration time and probability of false alarm (PFA), have on detection by a radiometer. We describe a variation of CCSK called truncated CCSK (TCCSK). In this system, the code of length 2/sup k/ is cyclically shifted, then truncated and transmitted. Although shortened, the truncated code still represents k bits of information, thus leading to an increased data rate. We evaluate radiometer detection of TCCSK and it is shown that the probability of detection is increased compared with the detection of CCSK.  相似文献   

15.
16.
Signal or target detection is sometimes complicated by the presence of strong interference. When this interference occurs mainly in the sidelobes of the antenna pattern, a solution to this problem is realized through a sidelobe canceler (SLC) implementation. Since the false-alarm probability is a system parameter of special importance in radar, an interference-canceling technique for radar application should maintain the false-alarm probability constant over a wide range of incident interference power. With the requirements of sidelobe interference cancellation and constant false alarm rate (CFAR), a new algorithm for radar detection in the presence of sidelobe interference is developed from the generalized likelihood ratio test of Neyman-Pearson. In this development, the received interference is modeled as a nonstationary but slowly varying Gaussian random process. Cancellation of the sidelobe interference is based upon a `synchronous' estimate of the spatial covariance of the interference for the range gate being tested. This algorithm provides a fixed false-alarm rate and a fixed threshold which depend only upon the parameters of the algorithm  相似文献   

17.
The detection performance of the maximum mean level detection (MX-MLD) when noncoherent integration is used under both nonfluctuating and chi-square fluctuating target models is analyzed. Finite series are obtained in all cases. Required thresholds and constant false-alarm rate loss curves are presented, with emphasis on the important Swerling case II model  相似文献   

18.
Exponential mixture probability density functions (pdfs) are shown to be useful models of radar sea clutter. The variability of certain parameters leads to estimation error and degradation in the performance of detection algorithms derived from this model. Robust implementations are introduced by assuming that parameters are known within certain intervals and selecting values to prevent an excessive number of false alarms. An empirical study demonstrates an average 6-9 dB gain in comparison with a constant false-alarm rate (CFAR) processor  相似文献   

19.
Closed-form formulas allow rapid determination of noncoherent integration gain and integration loss when the single-sample IF signal-to-noise ratio (SNR) is known. In addition, if the required SNR is known for any number of integrated pulses, the required SNR for any other number is easily determined. A closed-form expression is given for radar collapsing loss, expressed in terms of the equivalent integrated signal-to-noise ratio required to produce a given combination of false-alarm and detection probabilities. Alternatively, the single-sample signal-to-noise ratio of a set of samples may be used together with the closed-form expression for integration gain to get the equivalent integrated signal-to-noise ratio.  相似文献   

20.
The problem of adaptive cell-averaging constant false-alarm rate (CFAR) detection is considered for two distributed sensor network topologies, namely the parallel and the tandem topologies. The compressed data transmitted amongst the detectors is assumed to be in the form of decisions. The overall systems are optimized to yield the maximum probability of detection for a fixed probability of false alarm. The performance of the systems is also analyzed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号