首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 809 毫秒
1.
The New Horizons Spacecraft   总被引:1,自引:0,他引:1  
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.  相似文献   

2.
The question of Traveling Wave Tube (TWT) reliability in space poses some unique problems. First, since tube reliability has a tremendous impact on system design and overall cost, if problems do occur, they are highly visible. Second, attaining high reliability is made difficult by small production runs and short delivery schedules. Finally, the now-common 10 year life specification is combined with state-of-the-art performance requirements, forcing design changes and adding risk. To meet these requirements, we emphasize certain design and manufacturing ground rules. When orbital TWT problems do occur, our experience is that they are usually caused by infant mortality, not wearout. Data based on operation in space show that with close attention to the details of design and manufacturing, reliability exceeding the 500,000 hours MTBF normally specified is achieved. Traveling Wave Tube reliability and overall performance have a tremendous impact on system design and the overall cost of a satellite. TWT reliability determines the amount of redundancy needed to meet a given satellite mission objective. Increased redundancy means increased complexity and weight of the spacecraft. The TWTs, with their Electronic Power Conditioners, also dissipate over 80% of all spacecraft power. Increased tube efficiency will therefore simplify matters all around. Because of the critical impact of tubes, if technical problems do occur, they are highly visible at the system level, where rumors of failure spread like wildfire in the fairly small space community. Attaining high reliability is difficult because of the many conflicting requirements.  相似文献   

3.
基于航天测控的实时仿真系统设计   总被引:1,自引:0,他引:1  
航天器发射试验具有高风险性,而承担航天器测控的测控系统规模庞大、关系复杂,其测控设备、软件的正确性关系到试验成败。仿真技术的广泛应用,使设备、软件的正确性在发射任务前就可以得到充分验证,从而提高发射试验的安全性。以航天器试验任务为背景设计的实时仿真系统,在航天测量船上得到了成功应用,取得了良好的效果。  相似文献   

4.
High voltage has been used for electrical power system generation, transmission, and distribution for over 75 years and manufacturers have been designing x-rays, radios/television transmitters and receivers for many years with excellent success. High voltage usage in aerospace equipment initiated during World War II with the advent of high power communications and radar for airplanes. About 20 years ago the first high voltage components were built for spacecraft systems. This article is to provide some insight into the status of high voltage for aerospace equipment and the differences between terrestial and aerospace system functions and the attendant problems. What are the basic differences between terrestial/commercial and aerospace equipment? The aerospace environment is defined as that significantly above the Earth's surface: From 5000 feet altitude to deep space. The basic differences are the constraints placed on the user vehicle (airplane, missile, or spacecraft). Constraints include: Atmospheric pressure, temperature, lifting capability, electronic requirements, and volume. Early airplanes needed only radios and mechanical pressurization instruments. Today's sophisticted airplanes require transmitters, receivers, controls, displays, and in the military case, special electronics. The addition of electronic devices has increased the electrical power demand from a few watts (for early aircraft) to well over one megawatt for special applications. There is the need for compact packaging to reduce weight and volume. Spacecraft with booster limitations are ever more restrictive of weight and volume then airplanes while they must maintain complete electrical system integrity for mission durations of several months to years.  相似文献   

5.
The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost  相似文献   

6.
我国空间站运行的测控通信工作模式初探   总被引:2,自引:0,他引:2  
在分析我国载人空间站在轨运行的任务特点和对测控通信提出的新要求的基础上,对测控通信工作模式进行了探讨。针对任务中心,采用分布式模式进行任务的组织和实施,建立常态化工作体系;针对测控通信资源的使用,对资源进行简化、优化,发挥天、地基各自优势,并实现天地基资源统一调度;针对在轨故障诊断和应急处置,提出了“天地联合,以地为主”的载人航天故障诊断模式和实现途径;针对空间站遥操作需求,提出了一套工作模式和实施流程;针对测控通信长期执行任务的可靠性,提出了任务中心容灾备份工作模式和通信路由的备份模式。以期为后续任务工作模式设计提供参考。  相似文献   

7.
基于励磁电流前馈调节的航空直流发电系统建模分析   总被引:1,自引:0,他引:1  
赵耀  王慧贞  张海波  陈晨  肖岚 《航空学报》2015,36(4):1230-1239
 高压直流(HVDC)发电系统因为其效率高、质量轻以及可靠性高等诸多优点成为航空供电系统的首选,其系统输出端存在着用于滤波的大电容,这使得采用传统PI调节方案的调压器不能满足系统的动态性能要求。因此,提出了采用励磁电流前馈(ECF)的调压器技术。对该技术进行了详细的理论分析,分别建立了有励磁电流前馈环和无励磁电流前馈环的发电系统的数学模型。比较2个系统的性能,发现有励磁电流前馈环的发电系统截止频率得到了较大的提高。实验表明,在突加负载和突卸负载2种情况下,加入励磁电流前馈环控制,系统能够迅速响应,保持稳定并且超调量小,动态性能得到了明显提高。该方法可推广到不同类型的航空发电系统的调压控制中。  相似文献   

8.
Current program planning in the area of lunar surface explorationenvisions missions of increasing energy requirements and duration.During the mid 1970's it has been estimated that the electrical powerrequirements for a 3-man mission of one year duration might be in theorder of 33 000 kWh. Load profiles to support regeneration of fuelcell reactants for lunar roving vehicles and base nighttime operationsindicate potential power levels of from 30 to 100 kW. An electricalpower system using a state-of-the-art photovoltaic energy conversionsource was postulated on the assumption that nuclear power systemtechnology would not be flight ready by this time period.The process of synthesizing an overall electrical power system isdiscussed. Included are analyses and system design rationale. A rangefrom 50 to 500 volts dc is considered and the effect on weight andefficiency determined. Additional system criteria such as thermalcontrol, reliability, and emergency operation are discussed. A shred-out oftotal system weight as a function of voltage and regulation is presentedfor a 36 kWload. The impact ofload level, conditioning efficiency,transmission length, and temperature on system weight is discussed. Sensitivityivity curves depicting the effect of variations in these parameters areprovided.It is concluded that an efficiency of 80 percent or greater can beattained by matching the load profile with distribution voltage.  相似文献   

9.
A study is presented on the design and testing of spacecraft power systems using the virtual test bed (VTB). The interdisciplinary components such as solar array and battery systems were first modeled in native VTB format and validated by experiment data. The shunt regulator and battery charge controller were designed in Simulink according to the system requirements and imported to VTB. Two spacecraft power systems were then designed and tested together with the control systems.  相似文献   

10.
New technological advances in the area of power electronics are having an increasing impact on the design of aerospace control systems. These next generation power components promise improved system performance through increased electronic efficiencies. Applying state-of-the-art packaging concepts as an integral part of the system design will allow these devices to be utilized in a space efficient and reliable manner. The first portion of this paper looks at two such next generation components. The first is a High Voltage Integrated Circuit (HVIC) that provides a bridge between the low voltage controller logic and the high voltage motor winding invertor. This device achieves size reduction and an increase in reliability through integration of low and high voltage logic networks on a single integrated circuit. The second is the Insulated Gate Transistor (IGT). This device provides a high voltage switch with MOS-like drive characteristics. The present and future expectations of these power devices are discussed. This paper then looks at new packaging techniques for power devices. The impact of parasitic circuit effects have significant impact on power circuit performance. Finally, this paper looks at an example control application. The design is that of a permanent magnet motor driven actuator. The drive motor uses 270 vdc for supply voltage. Within the intelligent system controller, is the capability to control the current demands of the motor. The new power electronics devices are making the design feasible in both thermal and volume efficiency. This topic includes projected controller sizing into the 1990s.  相似文献   

11.
Aspects of high-power high-voltage power conditioner design and weight estimation relevant to space subsystems are discussed. Weight has become an increasingly important parameter with the advent of larger and more sophisticated spacecraft, especially those for high-power communication. A computer program for estimating the weight of a high-power dc-to-dc power conditioner as functions of output power, operating frequency, input voltage range, maximum input voltage, and efficiency, respectively, is described, including computer-aided design of inductors and transformers. Curves of typical power conditioner weight as functions of the preceding parameters, derived from the power conditioner weight program, are presented.  相似文献   

12.
王勇 《飞机设计》2013,(6):56-59
余度技术是系统或设备获得高可靠性的设计方法之一。为了显著提高系统的任务可靠性,当系统发生故障时,余度系统能够自动完成系统重构,继续正常工作,从而提高了飞机的任务可靠性和安全性。本文从余度设计的概念出发,通过对余度等级、结构、数目及层次等几个方面对余度设计进行分析,结合某大屏幕显示器余度设计,给出了余度设计的基本方法,提出了一种余度管理方案,该设计思想也可用于其它机载设备中。  相似文献   

13.
张柏楠  戚发轫  邢涛  刘洋  王为 《航空学报》2020,41(7):23967-023967
载人航天器具有系统规模大、技术难度高、单件小批量、无法通过多次飞行持续完善设计、可靠性要求高等特点。当前载人航天器研制中仍存在着参数化和模型化程度不高、基于模型的系统综合仿真验证不足、研制各环节缺乏数字化集成等问题,传统基于文本的系统工程方法已无法满足研制需求,亟需采用基于模型的系统工程方法。本文针对载人航天器的研制现状和应用需求,提出了面向载人航天器全生命周期的模型体系,定义了需求模型、功能模型、产品模型、工程模型、制造模型、实做模型等六类模型,提出了基于模型的研制流程,包含系统设计闭环验证、产品设计闭环验证、实做产品闭环验证3个验证环节,并深入探索了各研制环节中不同模型间的传递与关联关系。以某型号载人航天器为应用基础,系统地验证了提出的方法。  相似文献   

14.
15.
Lockheed Martin Astronautics has developed the Multifunctional Structure (MFS) concept as a new system for spacecraft design that eliminates chassis, cables, connectors and folds the electronics into the walls of the spacecraft. Concurrent engineering will be essential to integrate the electronic, structure, and thermal design. Design methodologies are in work to manage all power, grounding and shielding concerns. The MFS approach offers significant savings in mass and volume and supports the “faster-better-cheaper” philosophy in new spacecraft programs. The technology will be demonstrated as an experiment on the New Millenium Program Deep Space 1 (DS 1) mission  相似文献   

16.
This overview paper presents estimates of the photovoltaic power systems needed on commercial communications spacecraft in the year 2000. These are developed in the form of power requirements based on extrapolation of the historical growth in communications traffic and are about 5 to 15 kW. The paper also addresses the key technology drivers in these photovoltaic systems. The importance of reducing mass in the power system is described in terms of the tradeoff with communications systems mass to maximize communications revenue. It surveys solar array components and subsystems to meet these future requirements and attempts to identify the development candidates with a large payoff potential and a high probability of successful development.  相似文献   

17.
To fly close to the Sun (to a perihelion of 4 solar radii) represents many unique challenges to a mission and spacecraft design. The solar probe design is a result of over two decades of studies that have allowed the evolution of both the mission and trajectory design, as well as the spacecraft configurations. During these studies some of the most significant design challenges have been the trajectory design, the spacecraft shield design, the spacecraft configuration, the telecommunications near perihelion, science instrument accommodations, and minimizing mission cost. This latter challenge (minimum cost) permeates all other design issues suggesting specific solutions consistent with this constraint. This presents the evolution and rationale that have taken place to arrive at the current design for this challenging mission.  相似文献   

18.
The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin.  相似文献   

19.
赖承祺  顾左  宋莹莹  王蒙  郭伟龙  吴辰宸 《推进技术》2019,40(10):2183-2189
为预估与提高航天器有效载荷能力,结合航天运输系统理论与离子推力器放电模型,对深空探测任务中以离子电推进系统为主要动力来源的航天器有效载荷能力进行了分析。通过理论推导,构建并揭示了有效载荷分数与深空探测任务参数和电推进系统性能参数的函数关系与潜在联系。结果表明:动力装置单位质量越小,航天器所能达到的最佳有效载荷分数越大;有效载荷分数的高低与离子引出份额、原初电子利用率参数的大小以及任务时间的长短呈正相关;当离子电推进系统可以达到更高的载荷比时,则需要更高的工质利用率作为支持。  相似文献   

20.
Eight evaluation metrics are used to compare and contrast three coordination schemes for a system that continuously plans to control collections of rovers (or spacecraft) using collective mission goals instead of goals or command sequences for each spacecraft. These schemes use a central coordinator to either: 1) micromanage rovers one activity at a time; 2) assign mission goals to rovers; or 3) arbitrate mission goal auctions among rovers. A self-commanding collection of rovers would autonomously coordinate itself to satisfy high-level science and engineering goals in a changing partially understood environment - making the operation of tens or even a hundred spacecraft feasible  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号