首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
当天基雷达采用多波束扫描时,每次与空间目标交会可获取类似跟踪的观测数据。本文讨论了这些密集短弧观测数据在目标轨道改进中的应用。在没有测量时,采用矩阵Ricatti方程计算状态误差;引入观测数据时,比较了EKF和UKF两种滤波算法的轨道改进效果。仿真表明,UKF的收敛速度优于EKF;天基短弧观测数据可以很好地抑制误差发散,满足监视任务需求。  相似文献   

2.
黄普  郭璞  张国雪 《飞行力学》2020,(1):80-83,94
针对我国地面测站对高轨卫星监视能力缺乏的问题,提出一种低轨卫星对高轨卫星仅测角初轨计算方法。该算法引入天基跟踪坐标系,消除测距信息影响,建立仅测角观测方程;引入法向运动,增加摄动因素影响,建立扩展拉普拉斯动力学模型;推导分析观测模型和动力学模型的关系方程,将初轨计算问题转换为非线性方程求解问题,利用高斯全主元消去法完成方程求解。通过实战和仿真测角数据对方法进行检验,结果表明,该方法能利用仅测角数据对非合作目标进行初轨确定,精度在公里量级,可为我国地基监视系统提供补充参考。  相似文献   

3.
The forthcoming 10 cm range tracking accuracy capability holds much promise in connection with a number of Earth and ocean dynamics investigations. These include a set of earthquake-related studies of fault motions and the Earth's tidal, polar and rotational motions, as well as studies of the gravity field and the sea surface topography which should furnish basic information about mass and heat flow in the oceans. The state of the orbit analysis art is presently at about the 10 m level, or about two orders of magnitude away from the 10 cm range accuracy capability expected in the next couple of years or so. The realization of a 10 cm orbit analysis capability awaits the solution of four kinds of problems, namely, those involving orbit determination and the lack of sufficient knowledge of tracking system biases, the gravity field, and tracking station locations. The Geopause satellite system concept offers promising approaches in connection with all of these areas. A typical Geopause satellite orbit has a 14 hour period, a mean height of about 4.6 Earth radii, and is nearly circular, polar, and normal to the ecliptic. At this height only a relatively few gravity terms have uncertainties corresponding to orbital perturbations above the decimeter level. The orbit s, in this sense, at the geopotential boundary, i.e., the geopause. The few remaining environmental quantities which may be significant can be determined by means of orbit analyses and accelerometers. The Geopause satellite system also provides the tracking geometery and coverage needed for determining the orbit, the tracking system biases and the station locations. Studies indicate that the Geopause satellite, tracked with a 2 cm ranging system from nine NASA affiliated sites, can yield decimeter station location accuracies. Five or more fundamental stations well distributed in longitude can view Geopause over the North Pole. This means not only that redundant data are available for determining tracking system biases, but also that both components of the polar motion can be observed frequently. When tracking Geopause, the NASA sites become a two-hemisphere configuration which is ideal for a number of Earth physics applications such as the observation of the polar motion with a time resolution of a fraction of a day. Geopause also provides the basic capability for satellite-to-satellite tracking of drag-free satellites for mapping the gravity field and altimeter satellites for surveying the sea surface topography. Geopause tracking a coplanar, drag-free satellite for two months to 0.03 mm per second accuracy can yield the geoid over the entire Earth to decimeter accuracy with 2.5° spatial resolution. Two Geopause satellites tracking a coplanar altimeter satellite can then yield ocean surface heights above the geoid with 7° spatial resolution every two weeks. These data will furnish basic boundary condition information about mass and heat flows in the oceans which are important in shaping weather and climate.  相似文献   

4.
A space-based radar system concept is described that can provide continuous world-wide, all-weather, day-night observation and tracking of ships, aircraft, vehicles and ground facilities of interest. The system employs a constellation of radar satellites in low-earth orbit to provide continuous world-wide target access. The radars employ reflector antennas, TWT transmitters and high frequency (e.g., X band) to achieve long range with relatively low weight, complexity and cost. The radars operate in moving-target-detection (MTD) and synthetic-aperture-radar (SAR) spotlight imaging modes to observe moving and fixed targets, respectively. The system could support a wide range of military, intelligence, law-enforcement and civilian missions  相似文献   

5.
The increasing need for a continuous communications link with U.S. Department of Defense (DoD) spacecraft during test missions in low Earth orbit (LEG) has resulted in greater interest in geosynchronous data relay services. This may be a more economical alternative to building additional remote tracking stations for the Air Force Satellite Control Network (AFSCN), and avoids tying up operational assets for a test mission. A low-cost near-term approach for such a space-based data relay system would utilize two existing Defense Satellite Communication System III spacecraft, two existing ground terminals, and a small, standardized terminal using autonomous antenna pointing for the space vehicle under test. Such a system design is presented  相似文献   

6.
针对如何部署光学探测设备才能更好实现对空间目标的高精度高频度监视问题,考虑光照条件、相对关系及探测性能,构建了天/地基空间目标探测与成像仿真模型;按照轨道特征选取了94颗LEO(Low Earth Orbit,低地球轨道)卫星、63颗GEO(Geosynchronous Earth Orbit,地球同步轨道)卫星和18颗大椭圆轨道卫星,选用春夏秋冬典型季节的特定时间长度,仿真分析了国内地基、南北极科考站、LEO卫星、准GEO卫星等多平台光电手段的位置探测和成像观测能力;比对分析地基平台纬度和季节、天基平台轨道高度和倾角对探测能力的影响得出:南北极科考站相比于国内站点可提高重点季节的探测时效性,98°倾角LEO平台对低轨目标成像时效性方面更具优势,等.在此基础上,提出了我国空间目标光电观测设备天地一体的布局构想.  相似文献   

7.
A method to improve satellite tracking accuracy is presented and discussed theoretically and experimentally in terms of two parts: correction for errors of the tracking system and correction of satellite orbit predictions. In the first part, it is concluded that the pointing error of the tracking system can be determined accurately using data from stellar observations, so that correction is possible with an accuracy of about 0.001°. In the second part, it is shown that apparent errors of satellite orbital elements can be deduced from the optical observation of one orbit, and one can track the satellite after the correction with high accuracy for several subsequent orbits. The accuracy is 0.1-0.2 mrad or better for satellites at 1000 km altitude when given orbit prediction accuracy is approximately 1°.  相似文献   

8.
针对地球静止轨道目标监视问题,提出了一种基于汇聚点观测的天基光学监视星座设计方法.研究分析了地球静止轨道目标分布特性,针对静止轨道目标在特定位置分布密度较大的特点,设计了监视星座对汇聚点区域进行重点观测的策略.分析了监视星座的轨道类型和传感器观测策略,提出采用太阳同步轨道设计监视星座和相应的汇聚点区域观测的方法.在满足对汇聚点观测要求及同步带重访周期为1d的条件下,对星座进行了设计.仿真结果表明:设计的4颗卫星组成的观测星座,对同步带目标的重访周期小于1d,24 h内的平均观测时间约为900 s,且能观测到更多的同步带目标.该方法可供工程应用参考.  相似文献   

9.
基于"嫦娥二号"卫星再拓展试验的设计轨道,研究各种摄动力对轨道确定精度的影响,得出的结论是:若要达到km量级的轨道确定精度,必须考虑除天王星和海王星之外所有大行星以及日月的质点引力。文章进一步利用数值分析法研究再拓展任务的轨道确定精度,分析结果表明:基于目前的测控条件,使用30 d以上的测轨弧段可以得到稳定可靠的轨道解,而短弧(小于20 d)稳定轨道的获取需要VLBI(甚长基线干涉)测轨数据支持;当"嫦娥二号"距离地球700万km时,测控精度可优于30 km;虽然每天测轨弧段的增加可以改善轨道精度,但是当增加到8 h以上时,定轨精度将不再有明显改善。  相似文献   

10.
针对既有天基探测的不足,本着降低卫星制造难度、使用复杂度,拓展监视对象的原则,针对编目测轨所需,论证设计了一个采用零倾角、9 000km高度轨道,装有7个可见光探测器,以空域监视方式支持空间目标编目测轨的构想。该构想只需1颗卫星,即可形成空间目标编目所需的测轨,独立支持LEO(低地球轨道)和GEO(地球同步轨道)目标的编目管理,具有战略、战术双重价值。  相似文献   

11.
针对仅含角度测量信息的单个天基平台可观测性较弱的问题,提出了一种含脉冲机动检测的空间非合作目标跟踪算法,并设计了非合作目标实时跟踪数据处理流程.该算法利用抗差估计技术和UKF(Unscented Kalman Filter,无迹卡尔曼滤波)算法构造目标跟踪滤波器,并综合残差多项式拟合和新息分布特征等方法实现目标机动检测,在天基平台观测信息类型有限和观测几何较差的情况下,可以同时排除孤立野值和成片测量野值的影响,实现非合作机动目标的连续稳定跟踪.数值实验验证了算法的可行性和有效性,也表明了跟踪精度和可靠性与测量精度密切相关.  相似文献   

12.
Advanced surveillance and communications are the main functions needed for an efficient Air Traffic Control/Management (ATC/ATM). In order to perform them over the entire Earth, a novel architecture is described and evaluated. It supplies the surveillance and data link capabilities of advanced Secondary Surveillance Radar (SSR) Mode S world-wide by means of a constellation of medium orbit satellites carrying SSR Mode S interrogators with phased-array antennas; no new equipment is required on-board aircraft, because the standard transponders are used. The rationale for the study, the system geometry, the link budget computation, the accuracy requirements as well as the subsequent design of the payload and of the optimized constellations needed for global coverage with high location accuracy are described. Moreover, details are given about the design of the spacecraft and of the main units of the space segment. The encouraging results of this overall system study pave the way to a demonstration based on simulators and ground prototypes of the critical parts  相似文献   

13.
Advanced Receiver Autonomous Integrity Monitoring(ARAIM) is a new technology that will provide worldwide coverage of vertical guidance in aviation navigation. The ARAIM performance and improvement under depleted constellations is a practical problem that needs to be faced and researched further. It is a shortcut that improves the availability in position domain whose key idea is to replace the conventional least squares process with a non-least-squares estimator to lower the integrity risk in exchange for a slight increase in nominal position error. The contributions given in this paper include two parts: First, the impacts of one satellite outage on different constellations are analyzed and compared. The conclusion is that GPS is more sensitive and vulnerable to one satellite outage. Second, a constellation weighted ARAIM(CW-ARAIM)position estimator is proposed. The position solution is replaced by a constellation weighted average solution to eliminate the constellation difference. The new solution will move close to the constellation solutions with respect to the accuracy requirement. The simulation results under baseline GPS and Galileo dual-constellation show that the one GPS satellite outage will knock the availability from 91% to only 50%. The performance remains stable with one Galileo satellite outage. With the assistance of the CW-ARAIM method, the availability can increase from 50% to more than80% under depleted GPS configurations. Even without any satellite outage, the proposed method can effectively improve the availability from 91.29% to 98.75%. The test results under optimistic constellations further verify that a balanced constellation is more important than more satellites on orbit and the superiority of CW-ARAIM method is still effective.  相似文献   

14.
天基测控技术是航天测控系统的发展方向,是弥补地基(陆基+海基)测控系统缺陷、缓解地基测控资源紧张的有效办法。本文提出了基于“北斗一号”系统的航天器天基测控技术仿真方法,设计并建立了相应的仿真系统。基于建立的仿真系统、按照设计的仿真方法对航天器天基测控技术进行了全面仿真。仿真结果表明,基于“北斗一号”系统的天基测控技术可行,性能指标可以满足中低轨道航天器实际测控需要。  相似文献   

15.
Power requirements for an electric propulsion Earth orbital transport vehicle (EOTV), which can effectively deliver large payloads using much less propellant than chemical transfer methods, are addressed. The power beaming concept is described. Arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines are covered. Power supply characteristics are discussed for nuclear, solar and power-beaming systems. Operational characteristics are given for each, as are the effects of the power supply alternative on the overall craft performance. Because of its modular nature, the power beaming can meet the power requirements of all three electric propulsion types. Commonality of approach allows different electric propulsion approaches to be powered by means of a single power supply approach. Power beaming exhibits better flexibility and performance than onboard nuclear or solar power systems  相似文献   

16.
利用天基观测平台实现对空间目标的有效监视是空间监视的发展方向和必然趋势。本文提出充分利用天基光学观测灵活性,采用基于双/多星立体观测定位的方法,提高空间目标监视定位效能,并就系统观测条件进行分析。  相似文献   

17.
为了实时监测天基快速响应体系的工作过程,开发实现了一套基于 OSG平台的虚拟演示系统。首先,对组成天基快速响应体系的天基平台、轨道运载器和有效载荷进行三维可视化建模,并设计了定制在轨服务任务和管理天基平台的图形交互接口;其次,基于典型的轨道转移模型,介绍了执行任务的天基平台选定方法和流程;最后,通过典型的信息保障任务,展示了基于 OSG的天基快速响应体系的虚拟演示系统。  相似文献   

18.
全球卫星导航系统成熟的产业推广和技术应用极大地牵引了卫星导航发展需求,使相关学者愈来愈关注恶劣电磁环境下的抗干扰技术以及分米、厘米级高精度导航定位服务。低轨星座优越的平台/轨道特性使其被誉为未来极具潜力的卫星导航手段。特别是近十年商业航天的蓬勃发展,带动卫星平台技术及火箭运载技术突飞猛进,大大降低了低轨卫星制造与发射成本,使得面向低轨星座的导航定位技术成为研究热点和发展方向。首先深入地剖析了不同历史阶段低轨导航的应用方向和技术体制,梳理归纳了低轨卫星星座独立定位及低中高轨卫星联合定位两种应用模式的技术特点,然后分析了未来低轨导航在整个卫星导航系统体系中的应用前景和技术挑战,为未来低轨导航系统建设和发展提供设计参考与技术借鉴。  相似文献   

19.
天基对地打击武器是一种新的战略威慑力量,与地基发射的武器相比具有自己独特的优势。首先通过对天基武器作战过程的分析,得出在轨机动是实现天基快速对地打击的关键的结论;而后建立了天基平台的轨道面机动与相位机动的数学模型。在上述研究的基础上,通过数学仿真分析了轨道机动对打击时间的影响,得到了一些有用的基本结论。  相似文献   

20.
A method and results of calculating the laser radiation power values necessary to place an artificial earth satellite in orbit are presented; the values depend on the initial vehicle mass, velocity of the working fluid efflux from the laser rocket engine nozzle, velocity of vehicle motion, optimal values of thrust-to-weight ratio taking into account irreversible energy losses in the rocket engine jet. The possibility of creating a spacecraft with small initial mass is substantiated. A layout scheme of the propulsive system is proposed that makes it possible to divide total laser radiation power and to use atmospheric air as a working fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号