首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We present a new method for automatic target/object classification by using the optimum polarimetric radar signatures of the targets/objects of interest. The state-of-the-art in radar target recognition is based mostly either on the use of single polarimetric pairs or on the four preset pairs of orthogonal polarimetric signatures. Due to these limitations, polarimetric radar processing has been fruitful only in the area of noise suppression and target detection. The use of target separability criteria for the optimal selection of radar signal state of polarizations is addressed here. The polarization scattering matrix is used for the derivation of target signatures at arbitrary transmit and receive polarization states (arbitrary polarization inclination angles and ellipticity angles). Then, an optimization criterion that minimizes the within-class distance and maximizes the between-class metrics is used for the derivation of optimum sets of polarimetric states. The results of the application of this approach on real synthetic aperture radar (SAR) data of military vehicles are obtained. The results show that noticeable improvements in target separability and consequently target classification can be achieved by the use of the optimum over nonoptimum signatures  相似文献   

2.
Hardware-in-the-loop(HWIL) simulation technology can verify and evaluate the radar by simulating the radio frequency environment in an anechoic chamber. The HWIL simulation technology of wide-band radar targets can accurately generate wide-band radar target echo which stands for the radar target scattering characteristics and pulse modulation of radar transmitting signal. This paper analyzes the wide-band radar target scattering properties first. Since the responses of target are composed of many separate scattering centers, the target scattering characteristic is restructured by scattering centers model. Based on the scattering centers model of wide-band radar target, the wide-band radar target echo modeling and the simulation method are discussed. The wide-band radar target echo is reconstructed in real-time by convoluting the transmitting signal to the target scattering parameters. Using the digital radio frequency memory(DRFM) system,the HWIL simulation of wide-band radar target echo with high accuracy can be actualized. A typical wide-band radar target simulation is taken to demonstrate the preferable simulation effect of the reconstruction method of wide-band radar target echo. Finally, the radar target time-domain echo and high-resolution range profile(HRRP) are given. The results show that the HWIL simulation gives a high-resolution range distribution of wide-band radar target scattering centers.  相似文献   

3.
Radar target identification is performed using time-domain bispectral features. The classification performance is compared with the performance of other classifiers that use either the impulse response or frequency domain response of the unknown target. The classification algorithms developed here are based on the spectral or the bispectral energy of the received backscatter signal. Classification results are obtained using simulated radar returns derived from measured scattering data from real radar targets. The performance of classifiers in the presence of additive Gaussian (colored or white), exponential noise, and Weibull noise are considered, along with cases where the azimuth position of the target is unknown. Finally, the effect on classification performance of responses horn extraneous point scatterers is investigated  相似文献   

4.
针对弹道中段目标微特征难以识别与分辨的问题,提出了一种基于低分辨雷达和高分辨雷达相结合的混合体制雷达网的有翼弹道目标微特征及外形参数提取方法。依据非线性信号参量可分离模型,利用非线性最小二乘估计方法解算出有翼弹道目标群各散射中心的幅相参数,结合不同雷达提取的微特征的关联性,利用散射中心关联处理实现了各类散射中心的分离。在此基础上,利用弹道目标的微特征,结合弹道目标各散射中心的相对位置关系,重构出各目标的三维微特征及各散射中心的三维位置矢量,进而估计出目标的进动特征和结构参数。仿真结果表明:当信噪比(SNR)为5 dB时,该方法的重构精度保持在92%左右。  相似文献   

5.
The characteristics and target identification potential of a representation of the information from two polarization-diverse measurements of the radar backscatter of an unknown target are considered. The locus of these two polarization-diverse waveforms, termed the transient polarization response (TPR), has been shown to be closely related to the geometry of the scattering centers of the target. The polarization-related components of features derived from the TPR concur well with the shape and orientation of the major scattering centers distributed in the downrange profile of the object. This illustrates the intuitively appealing result that the polarization of the backscatter, as represented by the TPR and mapped onto the modified polarization chart, is determined by target geometry. It is shown that both polarization-related and amplitude-related features derived from the TPR are useful for target identification. By using distance measures that depend on various components, the elliptical parametrization information alone is sufficient to allow satisfactory target identification at SNRs of 0 dB and above. The significance of this result is that the absolute amplitudes of the received horizontally polarized and vertically polarized channels need not be known. However, if amplitude information is known, target identification percentages improve  相似文献   

6.
A method for modeling full polarization radar target is considered. The approach taken is to estimate a set of target features which describes the target as a set of attributed scattering centers. Each scattering center is characterized by its range, amplitude, and a polarization ellipse. An exponential model for the fully polarized radar return is described, and an algorithm for estimating the parameters in this model is developed. The modeling procedure is applied to compact range measurements of model aircraft  相似文献   

7.
Studies of target detection algorithms that use polarimetric radardata   总被引:2,自引:0,他引:2  
Algorithms are described which make use of polarimetric radar information in the detection and discrimination of targets in a ground clutter background. The optimal polarimetric detector (OPD) is derived. This algorithm processes the complete polarization scattering matrix (PSM) and provides the best possible detection performance from polarimetric radar data. Also derived is the best linear polarimetric detector, the polarimetric matched filter (PMF), and the structure of this detector is related to simple polarimetric target types. New polarimetric target and clutter models are described and used to predict the performance of the OPD and the PME. The performance of these algorithms is compared with that of simpler detectors that use only amplitude information to detect targets. The ability to discriminate between target types by exploring differences in polarimetric properties is discussed  相似文献   

8.
It has been shown that radar returns in the resonance region carry information regarding the overall dimensions and shape of targets. Two radar target classification techniques developed to utilize such returns are discussed. Both of these techniques utilize resonance region backscatter measurements of the radar cross section (RCS) and the intrinsic target backscattered phase. A target catalog used for testing the techniques was generated from measurements of the RCS of scale models of modern aircraft and naval ships using a radar range at The Ohio State University. To test the classification technique, targets had their RCS and phase taken from the data base and corrupted by errors to simulate full-scale propagation path and processing distortion. Several classification methods were then used to determine how well the corrupted measurements fit the measurement target signatures in the catalog. The first technique uses nearest neighbor (NN) algorithms on the RCS magnitude and (range corrected) phase at a number (e.g., 2, 4, or 8) of operating frequencies. The second technique uses an inverse Fourier transformation of the complex multifrequency radar returns to the time domain followed by cross correlation. Comparisons are made of the performance of the two techniques as a function of signal-to-error noise power ratio for various processing options.  相似文献   

9.
Field measurements of a modified Sikorsky S-55 helicopter target were carried out to investigate rotary-wing aircraft Doppler radar signature phenomenology. The results of the data analysis with regard to classification and identification of the aircraft based on its signature are presented. It was found that using the Doppler radar return and appropriate feature extraction techniques, the helicopter's design features can be estimated. Target backscatter from the main rotor blades, tail rotor blades, or hub can be used for target detection, acquisition, and classification as a rotary-wing aircraft. The extraction of configuration and blade count features can further define the helicopter for identification  相似文献   

10.
We present a classification approach for full polarimetric SAR data based on Cloude's Decomposition Theorem. The approach is rule based, making use of knowledge of both the scattering properties contained in the entropy and α-angle values plus the backscatter intensities, which lie behind the first eigenvalue of the polarimetric coherency matrix. In order to overcome imprecise decision boundaries we make use of fuzzy logic. In a final step, the derived rulebase can be supervisedly optimized by a neuro-fuzzy approach. We show the performance of our approach on a data set taken by DLR's Experimental SAR (E-SAR) in L-band.  相似文献   

11.
It is shown that in a situation where a radar target is distant enough from the radar and is included in a natural or artificial clutter environment in such a manner that the conventional detection methods fail, it is possible to improve the radar detection performance by using appropriate signal processing on two orthogonal polarization states. A CFAR (constant false alarm rate) polarimetric detection system based on the study of the polarization difference between clutter and target is proposed. Since the polarization state of the clutter echoes fluctuates slowly from cell to cell, an autoregressive model can be applied to the components of the polarization vector to predict the detection thresholds needed to follow the polarization state variation. The detection thresholds are determined to maintain a false alarm probability equal to 10-6. The presence of a target registers as a significant variation of the estimation error of the polarization vector. Results obtained from measurements of simple and canonical targets with artificial clutter are presented, and these results validate the principle of polarimetric detection  相似文献   

12.
The authors assess the state of the art, focusing on their own contributions. Covered areas are the electromagnetic inverse problem in radar polarimetry, coherent polarization radar theory, partially coherent polarization radar theory, vector (polarization) inverse scattering approaches, the polarimetric matched filter approach, polarimetric Doppler radar applications in meteorology and oceanography, and image fidelity in microwave vector diffraction tomographic imaging  相似文献   

13.
The objective of the high-altitude supersonic target (HAST) radar augmentation system is to simulate the radar cross section (RCS) of a real target. The system is, therefore, of the active transponder type with various radiating antennas simulating the dominant scattering centers on the real target. We develop a system model, which when combined with the measured RCS of the HAST vehicle, simulates the RCS of the real target. Comparisons with measurements illustrating the success of the simulation program are given.  相似文献   

14.
The classification of ship targets using low resolution down-range radar profiles together with preprocessing and neural networks is investigated. An implementation of the Fourier-modified discrete Mellin transform is used as a means for extracting features which are insensitive to the aspect angle of the radar. Kohonen's self-organizing map with learning vector quantization (LVQ) is used for the classification of these feature vectors. The use of a feedforward network trained with the backpropagation algorithm is also investigated. The classification system is applied to both simulated and real data sets. Classification accuracies of up to 90% are reported for the real data, provided target aspect angle information is available to within an error not exceeding 30 deg  相似文献   

15.
The derivation of a completely adaptive polarimetric coherent scheme to detect a radar target against a Gaussian background is presented. A previously proposed Generalized Likelihood Ratio Test (GLRT) polarimetric detector is extended to the case of a general number of channels; this exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. Together with the fully adaptive scheme, a model-based detector is derived that has a lower estimation loss. A complete theoretical expression is derived for the detection performance of both proposed polarimetric detectors. They are shown to have Constant False Alarm Rate (CFAR) when operating against Gaussian clutter, but to be sensitive to deviations from the Gaussian statistic. The application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   

16.
SAR ATR performance using a conditionally Gaussian model   总被引:1,自引:0,他引:1  
A family of conditionally Gaussian signal models for synthetic aperture radar (SAR) imagery is presented, extending a related class of models developed for high resolution radar range profiles. This signal model is robust with respect to the variations of the complex-valued radar signals due to the coherent combination of returns from scatterers as those scatterers move through relative distances on the order of a wavelength of the transmitted signal (target speckle). The target type and the relative orientations of the sensor, target, and ground plane parameterize the conditionally Gaussian model. Based upon this model, algorithms to jointly estimate both the target type and pose are developed. Performance results for both target pose estimation and target recognition are presented for publicly released data from the MSTAR program  相似文献   

17.
Measurements of L-band inland-water surface-clutter Doppler spectra   总被引:1,自引:0,他引:1  
Although radar surface-clutter reflectivities from terrain are generally much greater than those from water, strong Bragg resonances at low but non-zero Doppler frequencies in backscatter from small inland bodies of water might potentially cause false alarms for moving target indicator (MTI) or other Doppler signal-processing techniques designed for target detection in ground clutter. To provide data for investigating this concern, measurements of L-band radar backscatter were recorded from the surface of a small inland freshwater reservoir in central Massachusetts. These measurements were of unusually high system stability and spectral purity so as to provide up to 80 dB of available spectral dynamic range. Strong Bragg spikes occurred in the clutter Doppler spectra from the reservoir at low (3 to 4 Hz) but non-zero Doppler frequencies. This strong Bragg resonance was persistent in time and space throughout the measurements. Spectral results are presented for all four combinations of linear polarization. Comparison with tree clutter spectral results indicates that, when an occasional water body comes under surveillance at vertical polarization in otherwise generally forested terrain, water clutter spectral density is expected to exceed surrounding-terrain tree clutter spectral densities in the Bragg-offset Doppler vicinity by large amounts  相似文献   

18.
The problem of target classification for ground surveillance Doppler radars is addressed. Two sources of knowledge are presented and incorporated within the classification algorithms: 1) statistical knowledge on radar target echo features, and 2) physical knowledge, represented via the locomotion models for different targets. The statistical knowledge is represented by distribution models whose parameters are estimated using a collected database. The physical knowledge is represented by target locomotion and radar measurements models. Various concepts to incorporate these sources of knowledge are presented. These concepts are tested using real data of radar echo records, which include three target classes: one person, two persons and vehicle. A combined approach, which implements both statistical and physical prior knowledge provides the best classification performance, and it achieves a classification rate of 99% in the three-class problem in high signal-to-noise conditions.  相似文献   

19.
空间进动目标动态散射特性的实验研究   总被引:1,自引:0,他引:1  
研制了进动目标模型,构建了紧凑场微波暗室动态测量系统,通过暗室实验的方法研究了空间进动目标的动态散射特性,给出了若干典型条件下的全极化宽带测量结果。通过实验可以观察到目标进动引起的多普勒频移,证明了微波雷达对进动目标微多普勒的可观测性,同时观察到弹头常见结构引起的非理想点散射现象。实验结果的分析表明,该实验系统能够有效地揭示进动目标的目标特性和回波调制特性,从而为弹道中段目标的动态电磁散射特性、目标结构反演、运动参数提取和逆合成孔径雷达(ISAR)成像的研究奠定了基础,对于弹道中段目标识别的研究具有重要的意义。  相似文献   

20.
A model of a distributed target as a collection of independent, Poisson distributed point scatterers or scattering centers in a range-velocity target space is introduced and is characterized by a deterministic function called the ?scatterer density function.? This function is the density of the point scatterers in the range-velocity space and can be estimated in a relatively straightforward manner by any radar having adequate resolution in both range and velocity and no ambiguities in the region occupied by the distributed target. The use of the random signal radar with a correlator receiver is considered here and the statistical properties of the correlator output, when the return signal is from a distributed target, are derived. It is shown that the spectral density is simply related to the scatterer density function. The technique is illustrated by an example in which the target is a tornado modeled as a cylinder with constant angular velocity. The example suggests that is a possible to remotely estimate the radar cross section per unit volume as a function of distance from the center of the tornado.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号