首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Sustainable monitoring and determining the biophysical characteristics of crops is of global importance due to the increase in demand for food. In this context, remote sensing data provide valuable information on crops. This study investigates the relationship between the variables determined from both Synthetic Aperture Radar (SAR) and optical images and crop height. For this purpose, backscatter (σVH, σVV, σVH / σVV) and coherence (?VH, ?VV) of multi-temporal dual-polarized Sentinel-1 and vegetation indices of multi-temporal Sentinel-2 data are analyzed. Two indices, namely, Normalized Difference Vegetation Index (NDVI) and NDVI with the red-edge band (NDVIred), are interpreted to identify the contribution of the red-edge band over the near-infrared band. The Zile District of Tokat province in Turkey where dominantly sunflower cultivation is carried out, was selected as the study area. In the analysis of the data, Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Artificial Neural Network (ANN), EXtreme Gradient Boosting (XGBoost), and Convolutional Neural Network (CNN) were used. In the results of the study, ANN showed the lowest RMSE = 3.083 cm (RMSE%= 11.284) in the stem elongation period. The CNN followed the lowest RMSE for the Inflorescence development and flowering stages 19.223 cm (RMSE%=15.458) and 8.731 cm (RMSE%=5.821), respectively. In the ripening period, XGBoost achieved the lowest RMSE = 8.731 cm (RMSE%=6.091). All the best models in four methods were created using common variables of σVH, σVV, ?VH, ?VV and NDVIred, except ANN which exclude coherence variables. The results concluded that NDVIred contributed more than NDVI which is widely interpreted in previous studies.  相似文献   

2.
Vegetation fractional coverage (VFC) is an important vegetation parameter affecting exchanges of carbon, water, energy between the atmosphere and surface. In this study, the applicability of tonal and texture measures calculated using an IKONOS_2 image in retrieving VFC of forests was investigated in the urban area of Nanjing city, China. Four spectral vegetation indices (VI) and six texture measures (TEX) were related to VFCs acquired from in situ measurements. Models for estimating VFC based on VIs or/and TEXs were established and validated for planted low broad-leaf forest plots (PLB), planted mature forest plots (PMF), natural broad-leaf forest plots (NBF), and all forest plots (ALLv), respectively. The results show that high spatial resolution remote sensing data is applicable to estimate VFC in urban areas, and TEXs may act as effective supplements of vegetation indices (VIs) for the retrieval of VFC. VIs are suitable for VFC estimation of mature forests (such as NBF and PMF) with high vegetation density, and TEXs can yield a more accurate estimate for planted forests (such as PLB and PMF) with regular spatial distribution if they are calculated with proper parameters, such as window size. The combination of VIs and TEXs improve the estimation of VFC if forest types are not previously differentiated. The results can be used as a reference for determining effective spectral or texture parameters in VFC estimation under similar environmental conditions according to vegetation maturity and regularity.  相似文献   

3.
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra.  相似文献   

4.
In recent years, land surface temperature (LST) has become critical in environmental studies and earth science. Remote sensing technology enables spatiotemporal monitoring of this parameter on large scales. This parameter can be estimated by satellite images with at least one thermal band. Sentinel-3 SLSTR data provide LST products with a spatial resolution of 1 km. In this research, direct and indirect validation procedures were employed to evaluate the Sentinel-3 SLSTR LST products over the study area in different seasons from 2018 to 2019. The validation method was based on the absolute (direct) evaluation of this product with field data and comparison (indirect) evaluation with the MODIS LST product and the estimated LST using the non-linear split-window (NSW) algorithm. Also, two emissivity estimation methods, (1) NDVI thresholding method (NDVI-THM) and (2) classification-based emissivity method (CBEM), were used to estimate the LST using the NSW method according to the two thermal bands of Sentinel-3 images. Then, the accuracy of these methods in estimating LST was evaluated using field data and temporal changes of vegetation, which the NDVI-THM method generated better results. For indirect evaluation between the Sentinel-3 LST product, MODIS LST product, and LST estimated using NSW, four filters based on spatial and temporal separates between pairs of pixels and pixel quality were used to ensure the accuracy and consistency of the compared pairs of a pixel. In general, the accuracy results of the LST products of MODIS and Sentinel-3, and LST estimated using NSW showed a similar trend for LST changes during the seasons. With respect to the two absolute and comparative validations for the Sentinel-3 LST products, summer with the highest values of bias (?1.24 K), standard deviation (StDv = 2.66 K), and RMSE (2.43 K), and winter with the lowest ones (bias of 0.14 K, StDv of 1.13 K, and RMSE of 1.12 K) provided the worst and best results for the seasons in the period of 2018–2019, respectively. According to both absolute and comparative evaluation results, the Sentinel-3 SLSTR LST products provided reliable results for all seasons on a large temporal and spatial scale over our studied area.  相似文献   

5.
A time series of remotely-sensed chlorophyll a (chl a) in 1997–2010 was evaluated to determine mechanisms of phytoplankton variation in recent decade in the South China Sea (SCS) and the western North Pacific subtropical gyre (WNPSG). Satellite-derived sea surface temperature (SST) and aerosol optical thickness (AOT) were used as proxies for vertical nutrient supply and atmospheric aerosol, respectively. Chl a in the WNPSG was not significantly correlated with SST (r = 0.18, p > 0.05), but was with AOT (r = 0.31, p < 0.05), indicating the chl a was influenced by atmospheric deposition. Chl a in the SCS was negatively correlated with SST (r = −0.60, p < 0.05) and was positively with AOT (r = 0.20, p < 0.05). The correlation between AOT and chl a in the SCS does not reflect a major contribution from atmospheric deposition to chl a; instead, the relationship resulted from concurrence of the peaks of AOT and wind speed, which drive water mixing and nutrient supply. Consequently, chl a in the SCS would be regulated primarily by the nutrient supply from deep waters. Because SST was controlled by the ENSO teleconnection in the SCS, the chl a was coupled with ENSO events. The present study demonstrated that interannual phytoplankton variation could be controlled by different factors even in neighboring oligotrophic regions.  相似文献   

6.
Chlorophyll and suspended sediment concentrations (SSC) and sea surface temperature (SST) are important parameters in assessing the productivity of coastal regions. Numerous rivers flow into the eastern (Ganga, Subernarekha, Mahanadi, Godavari, Krishna, Penner, and Kaveri) and western (Narmada, Tapti, and Indus) coasts of the Indian sub-continent. Using IRS P4 (Oceansat-1) Ocean Color Monitor (OCM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, we have retrieved chlorophyll, calcite, and SSC near the mouth of these rivers for the period during 2000–2004. The maxima of chlorophyll-a concentrations at the river mouth is much higher for the Himalayan and north India rivers (Ganga, Subernarekha, Mahanadi, and Indus) (10–14 mg/m3) compared to rivers in the southern parts of India (Kaveri and Penner) (∼4 mg/m3). The maxima of calcite concentration (∼45 moles/m3), chlorophyll (∼14 mg/m3), and sediment concentrations (∼9 g/m3) near river mouth are found to be influenced by river discharges (Ganga and Brahmaputra) during the monsoon season. The calcite concentration (∼45 moles/m3) at the mouth of Ganga river shows a major peak with the onset of monsoon season (June–July) followed by a maxima in chlorophyll-a with a time lag of 1–2 months. The Krishna, Kaveri, and Penner rivers show low chlorophyll concentrations (3–8 mg/m3), high calcite (0–40 moles/m3), and low SSC (<3 g/m3) compared to Narmada and Tapti rivers (chlorophyll-a 12–14 mg/m3, calcite 0–2 moles/m3, and SSC 13–19 g/m3). The Indus river shows similar behavior (maxima of chlorophyll ∼13 mg/m3 and SSC ∼8 g/m3) with respect to Ganga river except for high calcite concentration during winter months (∼25 moles/m3). The characteristics of the chlorophyll, calcite, and SSC at the mouth of these rivers show spatial and temporal variability along the eastern and westerns coasts of India which are found to differ widely. A comparison of the chlorophyll concentrations using OCM and MODIS data shows low chlorophyll concentrations in the Bay of Bengal as compared to the Arabian Sea.  相似文献   

7.
The question of whether there exists a large population of dust obscured QSOs is currently very controversial. In favour of this hypothesis are models for the origin of the X-ray Background (XRB) and also the Unified Model of AGN which both invoke large populations of obscured QSOs. For example, Madau et al. (1994) suggest a population of QSOs with NH ∼ 1024 cm−2 or AV = 1000m to improve the fit to the XRB between 1 < E < 100 keV. Arguments contradicting this theory include those of Boyle & di Matteo (1995) who claim that the tight X-ray/optical flux ratio relation for QSOs precludes the existence of a large population of objects obscured by significant amounts of intrinsic dust. Here, we follow Madau et al. (1994) and Comastri et al. (1995) to make fits to the XRB using obscured QSO populations and investigate whether selection effects may allow a tight distribution of X-ray/optical ratios to be maintained. We find that even for a flat distribution of absorbing columns, reasonable fits to the XRB can be obtained while both optical and X-ray absorption combine to produce the tight observed X-ray/optical correlation.  相似文献   

8.
The spatial distributions of galactic and anomalous cosmic rays in the heliosphere at the solar minima of Cycles 20/22 (qA > 0) and of Cycle 21 (qA < 0) are studied, using data from IMP 8, Voyagers 1/2 and Pioneer 10. It is found that the radial dependences of intensities J can be approximated by a power of radial distance r as J  rα with a different value of a constant in the inner and outer heliosphere with a transition at a radial distance of 10–15 AU. To study the physical meaning of these radial intensity profiles we examined the rigidity dependences of the intensity gradients by determining the particle mean free paths, using a simple one-dimensional modulation model. The particle mean free path λ was assumed to be a separable function of distance of the form rγ and rigidity R of Rδ over the range of 0.5–3.0 GV in the inner and outer heliosphere. It was shown that λ of rigidity dependence of R1.6 determined for Cycle 20/22 (qA > 0) with anomalous He is about 4–5 times larger than that of Cycle 21 (qA < 0) with R0.9 at around 1 GV in the outer heliosphere, and that the radial dependences are r1.4 and r1.1, respectively, for Cycles 20/22 and for Cycle 21.  相似文献   

9.
We have analysed a sample of 328 time-integrated GRB prompt emission spectra taken via the Konus instrument on board the US GGS-Wind spacecraft between 2002 and 2004 using a couple of two-components models, Cut-off Power Law (CPL) + Power Law (PL) and blackbody (BB) + PL. The spectra show clear deviation from the Band function. The PL term is interpreted as the low energy tail of a nonthermal emission mechanism. The distributions of corresponding index β give values β < −2/3 consistent with synchrotron and synchrotron self-Compton mechanisms. The distribution of low energy index α associated with the CPL term shows clear discordance with synchrotron models for 31.4% of the analysed GRBs with values exceeding that for the line of death, α = −2/3. Then, a set of nonthermal radiation mechanisms producing harder slopes, i.e., α > −2/3, are presented and discussed. For the remaining majority (68.6%) of GRBs with CPL index α < −2/3, we show that optically thin synchrotron produced by a power law electron distribution of type, N(γ) ∼ γp, γ1 < γ < γ2, for finite energy range (γ2 ≠ ∞) is a likely emission mechanism with α ∼−(p + 1)/2 in the frequency range ν1 ? ν ? ν2 (where ν2 = η2ν1 with η = γ2/γ1), such that for p > 1/3, one gets α < −2/3. We also show that corresponding spectra in terms of Fν and νFν functions are peaked around frequency ν2 instead of ν1, respectively for p < 1 and p < 3. Besides, thermal emission is examined taking a single Planck function for fitting the low energy range. It can be interpreted as an early emission from the GRB fireball photosphere with observed mean temperature, kT′ ∼ 16.8 keV. Furthermore, we have performed a statistical comparison between the CPL + PL and BB + PL models finding comparable χ2-values for an important fraction of GRBs, which makes it difficult to distinguish which model and specific radiation mechanism (possible thermal or nonthermal γ-ray emissions) are best suitable for describing the reported data. Therefore, additional information for those bursts, such as γ-ray polarization, would be highly desirable in future determinations of GRBs observational data.  相似文献   

10.
The present study investigated the physiological and biochemical characteristics of Scytonema javanicum, a pioneer species isolated from desert biological crusts, under salinity stress. Pigment analysis showed that salinity decreased chlorophyll a and phycocyanin content, while low salinity increased carotenoid concentration and high salinity decreased carotenoid concentration. Salinity also inhibited CO2 assimilation rate and photosynthetic oxygen evolution in this cyanobacterium. Chlorophyll a fluorescence transient parameters (φPo, φEo, ψO, RC/ABS, RC/CS, PIABS, and PICS) were decreased under salt stress, while dVo/dto(Mo), Vj and φDo were increased. The decrease of ETRmax and Yield and the change of chlorophyll a fluorescence transients showed that salt stress had an important influence on photosynthesis. These results indicated that the effects of salinity stress on photosynthesis in S. javanicum may depend on the inhibition of electron transport and the inactivation of the reaction centers, but this inhibition may occur in the electron transport pathway at the PSII donor and acceptor sites.  相似文献   

11.
Accurate spatial distribution information on gross domestic product (GDP) is of great importance for the analysis of economic development, industrial distribution and urbanization processes. Traditional administrative unit-based GDP statistics cannot depict the detailed spatial differences in GDP within each administrative unit. This paper presents a study of GDP spatialization in Ningbo City, China based on National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer Suite (VIIRS) night-time light (NTL) data and town-level GDP statistical data. The Landsat image, land cover, road network and topographic data were also employed as auxiliary data to derive independent variables for GDP modelling. Multivariate linear regression (MLR) and random forest (RF) regression were used to estimate GDP at the town scale and were assessed by cross-validation. The results show that the RF model achieved significantly higher accuracy, with a mean absolute error (MAE) of 109.46 million China Yuan (CNY)·km−2 and a determinate coefficient (R2 = 0.77) than the MLR model (MAE = 161.8 million CNY·km−2, R2 = 0.59). Meanwhile, by comparing with the estimated GDP data at the county level, the town-level estimated data showed a better performance in mapping GDP distribution (MAE decreased from 115.1 million CNY·km−2 to 74.8 million CNY·km−2). Among all of the independent variables, NTL, land surface temperature (Ts) and plot ratio (PR) showed higher impacts on the GDP estimation accuracy than the other variables. The GDP density map generated by the RF model depicted the detailed spatial distribution of the economy in Ningbo City. By interpreting the spatial distribution of the GDP, we found that the GDP of Ningbo was high in the northeast and low in the southwest and formed continuous clusters in the north. In addition, the GDP of Ningbo also gradually decreased from the urban centre to its surrounding areas. The produced GDP map provides a good reference for the future urban planning and socio-economic development strategies.  相似文献   

12.
We present in this work energy levels, oscillator strengths, radiative decay rates and fine structure collision strengths for the Mg III and Al IV ions. The 11 configurations: (1s2) 2s22p6, 2s22p53l, 2s2p63l, 2s22p54l   (l?n-1l?n-1, where n is the principal quantum number), yielding the lowest 75 levels are used. The collisional data for these two ions are missing in the literature, especially the database CHIANTI, this is the principal motivation behind the present work. Calculations have been performed using the AUTOSTRUCTURE code. AUTOSTRUCTURE treats the scattering problem in the distorted wave approach. Fine structure collision strengths are calculated for a range of electron energies from 10 Ry to 240 Ry. The atomic structure data are compared to available experimental and theoretical results.  相似文献   

13.
The Nile River Basin (NRB) is facing extreme demand for its water resources due to an alarming increase in population and the changing climate. The NRB is not compatible with ground-based in-situ observations owing to its large basin area size and limited hydrological data access from basin countries. Thus, it lends itself to remotely sensed approaches with high spatial resolution and extended temporal coverage. The Gravity Recovery and Climate Experiment (GRACE) avails a unique opportunity to investigate the changes in key components of terrestrial water storage (TWS). GRACE TWS solutions have specific tuning parameters and processing strategies that result in regionally specific variations and error patterns. We explored the TWS time series spatiotemporal changes, trends, uncertainties, and signal-to-noise ratio among different GRACE TWS data. We had also investigated the key terrestrial water storage components such as surface water, soil moisture, and groundwater storage changes. The results show that GRACE spherical harmonic solutions' uncertainty is higher than the mass concentration (mascon) over the NRB, and the Center for Space Research-mascons had the best performance. The evapotranspiration correlation (R2 = 0.85) has the highest correlation with GRACE’s TWS, whereas the normalized difference vegetation index (R2 = 0.82) has the second highest correlation. Notably, significant long-term (2003–2017) negative groundwater and soil moisture trends demonstrate a potential depletion of the NRB. Despite an increase in precipitation and the TWS time series, the rate of decline increased rapidly after 2008, thereby indicating the possibility of human-induced change (e.g. for irrigation purposes). Therefore, the results of this study provide a guide for future studies related to hydro-climatic change over the NRB and similar basins.  相似文献   

14.
Maps are presented with 12′ resolution of the Galactic Center and adjacent galactic plane, from ?II = 359° to ?II = 5°. The data were obtained with the Steward Observatory cryogenically-cooled, balloon-borne telescope. The data are from channels filtered for a bandpass of 70 μm < γ < 110 μm and for a longpass of γ > 80 μm. For the typical effective temperature of 25 K of a galactic HII region at this spatial resolution, the effective wavelength of the channels are 93 μ and 145 μm. Continuous emission is mapped along the galactic plane in both wavelengths. There are two contrasts between the immediate vicinity of SgrA (?π < 1°) and the galactic plane in general. Firstly, for ?π > 1° the galactic plane narrows dramatically at 93 μm, while retaining its width at 145 μm. Secondly, the individual sources at ?π > 1° (which we associate with HII regions) have greater peak brightness in the 145 μm channel than the 93 μm channel, while SgrA hasapproximately equal peak brightness in each. The maps demonstrate the importance of submillimeter wavelengths to galactic surveys.  相似文献   

15.
Variations of galactic cosmic ray intensity have been studied based on the neutron monitors and interplanetary magnetic field experimental data for different ascending and descending epochs of solar activity. The dependence of the diffusion coefficient on the cosmic ray particles rigidity R is stronger in the maxima epoch than in the minima epoch of solar activity. For the period of 1977–1981 (qA > 0) the diffusion coefficient for the minimum epoch is, χmin  R0.7 ± 0.04 and for the maximum χmax  R1.3 ± 0.05; for the period of 1987–1990 (qA < 0), χmin  R0.8 ± 0.05 and χmax  R1.1 ± 0.04. The exponents νy and νz of the power spectral density of the By and Bz components of the IMF in the region of the frequencies (10−6– 4 × 10−6) Hz are larger for the minimum epoch of 1987 (νy  2.0 and νz  1.93) than for the maximum epoch of 1990 (νy  1.43 and νz  1.27).  相似文献   

16.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   

17.
Mega wildfires are one of the environmental disasters worldwide. This study evaluates the pre-fire species diversity and the indirect effects, including habitat loss for one of the largest wildfires in Manavgat (Antalya-Turkey) in 2021, with a two-step methodology. Here, (1) burnt areas in the Manavgat district (2021) were detected with remote sensing data from Sentinel-2A by delta Normalized Burn Ratio calculation for a selected area in Google Earth Engine, and (2) mammals' habitat vector data of International Union for Conservation of Nature (IUCN) Red List were integrated into Habitat and Biodiversity modelling of Terrset to analyze the alpha, beta, gamma diversity and Range Restriction Index for the wildfire region. In the total 4210 km2 study area, 696 km2 of the area was damaged by different fire severity; also, there were 56 mammal species' habitats here. These species include bats (i.e. Nyctalus leisleri), felids (i.e. Felis chaus), rodents (i.e. Rattus norvegicus) and large mammals (i.e. Ursus arctos). 88 % of these species are in IUCN's Least Concern category. The remaining classes are Near Threatened (3.7 %) and Vulnerable (7.4 %). This study also indicated that the burnt area's species richness does not totally consist of endemic species. Therefore, pre-fire species richness analyses of this study can be a base for further studies about the species' post-fire activity and occupancy.Furthermore, the 2021 mega wildfires show us the necessity of wildfire monitoring and risk studies in the entire Mediterranean ecosystem to evaluate the risks to the Sustainable Development Goals. Therefore, post-fire spatial data, fire migration monitorization, and recording of the species' activities should be performed temporally. In this way, the ability of wildlife's recovering, and the direct and indirect effects of the fire will be examined for ecosystems in the long term.  相似文献   

18.
The effects of a glacially enriched zone of trace elements on soils and vegetation in the Thetford Mines area of Quebec were investigated using ground information plus digital Multispectral Scanner (MSS) data from airborne and Landsat sensors. The enriched zone was developed during the last glaciation when a southeastward flowing glacier eroded and dispersed an ultrabasic outcrop that had anomalous levels of Ni, Cu, Co, Cr, Mg and Fe.The dispersal train of enriched trace elements was detectable over an area at least 70 × 15 km ‘down-ice’ from the outcrop. In this zone total Ni concentrations in the soil ranged from background levels of 10 ppm to levels in excess of 1800 ppm. The dominant tree species, Abiesbalsamea (balsam fir) and Picea glauca (white spruce) reflect the soil anomaly with higher concentrations of trace elements in their tissue and lower concentrations of chlorophyll.An unsupervised enhancement of Landsat imagery showed that a tonal discontinuity was caused by a vegetation segregation related to the heavy metal enrichment soils. A detailed study based on Landsat MSS data was able to establish regional patterns of chlorophyll production by certain plant species closely related to the ultrabasic dispersal train. Multi-channel airborne MSS data confirmed the Landsat soil-plant patterns.  相似文献   

19.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号