首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Investigations of blood pressure, heart rate (HR), and heart rate variability (HRV) during long term space flights on board the “ISS” have shown characteristic changes of autonomic cardiovascular control. Therefore, alterations of the autonomic nervous system occurring during spaceflight may be responsible for in- and post-flight disturbances. The device “Pneumocard” was developed to further investigate autonomic cardiovascular and respiratory function aboard the ISS. The hard-software diagnostic complex “Pneumocard” was used during in-flight experiment aboard ISS for autonomic function testing. ECG, photoplethysmography, respiration, transthoracic bioimpedance and seismocardiography were assessed in one male cosmonaut (flight lengths six month). Recordings were made prior to the flight, late during flight, and post-flight during spontaneous respiration and controlled respiration at different rates.HR remained stable during flight. The values were comparable to supine measurements on earth. Respiratory frequency and blood pressure decreased during flight. Post flight HR and BP values increased compared to in-flight data exceeding pre-flight values. Cardiac time intervals did not change dramatically during flight. Pulse wave transit time decreased during flight. The maximum of the first time derivative of the impedance cardiogram, which is highly correlated with stroke volume was not reduced in-flight.Our results demonstrate that autonomic function testing aboard the ISS using “Pneumocard” is feasible and generates data of good quality. Despite the decrease in BP, pulse wave transit time was found reduced in space as shown earlier. However, cardiac output did not decrease profoundly in the investigated cosmonaut.Autonomic testing during space flight detects individual changes in cardiovascular control and may add important information to standard medical control. The recent plans to support a flight to Mars, makes these kinds of observations all the more relevant and compelling.  相似文献   

2.
The purpose of “Vitamin” experiment is to study the efficiency of protective substances on three biological acellular systems aqueous solutions exposed to cosmic radiation in space. The first system “LDL”is a low density lipoprotein. The second is “E2-TeBG complexe” in which estradiol (E2) is bound to its plasmatic carrier protein, testosterone-estradiol binding globulin (TeBG). The third is “pBR 322”, a plasmid. “Vitamin” experiment was accomodated in the Biopan which had been mounted on the outer surface of a Foton retrievable satellite. The experiment was exposed to space environment during 15 days. A stable temperature of about 20 °C was maintained throughout the flight. “Vitamin” experiment preliminary results are presented and discussed.  相似文献   

3.
The system of countermcasure of microgravity effects has been developed in Russia that allowed to perform safely long-term space flights. This system that includes different means and methods such as special regimens of physical exercises, axial loading (“Pingiun”) and antigravity suits, low body negative pressure device (LBNP, “Chibis”) and “cuffs” and others has been used with certain variations at certain stages of flight in 27 successfully accomplished space flights that lasted from 60 to 439 days. The pre-, in- and postflight studies performed in 57 crew members of these flights have shown that the system of countermeasure is effective in preventing or diminishing to a great extent almost all the negative effects of weightlessness in flights of a year and more duration and that the intensity and duration of changes recorded in different body systems after flights do not correlate significantly to flight durations, correlating strongly to the volume and intensity of physical exercises used during flight and especially during concluding stage of it.  相似文献   

4.
We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move “with” or “against” their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity.  相似文献   

5.
When US President George W. Bush on 14 January 2004 announced a new US “Vision for Space Exploration”, he called for international participation in “a journey, not a race”, a call received with skepticism and concern elsewhere. But, after a slow start in implementing this directive, during 2006 NASA has increased the forward momentum of action on the program and of discussions on international cooperation in exploring “the Moon, Mars, and beyond”. There are nevertheless a number of significant top-level issues that must be addressed if a cooperative approach to human space exploration is to be pursued. These include the relationship between utilization of the ISS and the lunar exploration plans, integration of potential partners’ current and future capabilities into the exploration plans, and the evolving space-related intentions of other countries.  相似文献   

6.
Pozzo T  Berthoz A  Popov C 《Acta Astronautica》1995,36(8-12):727-732
Here are reported preliminary results of the “Synergy” experiment performed aboard the Russian orbital station “MIR” in July 1993 (Altaïr Mission). The experiment was carried out before, during, and after the space flight of two astronauts (S1 and S2). The duration of the flight was 21 days for S1 and 6 month for S2. The subjects were tested during preflight, inflight and postflight. The astronaut subjects were fixed on the ground by the feet. They were asked to pick up a box in front of them on the ground. Two velocities of movement and two distances of the target to be reached were tested. The movement of several small markers placed on the body was recorded on video tape.

Results show that the shape of head and hand trajectories in the sagittal plane remains roughly the same during the flight in spite of the modification of mechanical constraints. Trajectory invariance does not result in joint angular displacement invariance. These data indicate that the planning of the movement takes place in terms of head and hand trajectories rather than joint rotations as it was previously suggested for simple arm reaching movement.  相似文献   


7.
Technology readiness assessments: A retrospective   总被引:1,自引:0,他引:1  
John C. Mankins   《Acta Astronautica》2009,65(9-10):1216-1223
The development of new system capabilities typically depends upon the prior success of advanced technology research and development efforts. These systems developments inevitably face the three major challenges of any project: performance, schedule and budget. Done well, advanced technology programs can substantially reduce the uncertainty in all three of these dimensions of project management. Done poorly, or not at all, and new system developments suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.In the mid 1970s, the National Aeronautics and Space Administration (NASA) introduced the concept of “technology readiness levels” (TRLs) as a discipline-independent, programmatic figure of merit (FOM) to allow more effective assessment of, and communication regarding the maturity of new technologies. In 1995, the TRL scale was further strengthened by the articulation of the first definitions of each level, along with examples (J. Mankins, Technology readiness levels, A White Paper, NASA, Washington, DC, 1995. [1]). Since then, TRLs have been embraced by the U.S. Congress’ General Accountability Office (GAO), adopted by the U.S. Department of Defense (DOD), and are being considered for use by numerous other organizations. Overall, the TRLs have proved to be highly effective in communicating the status of new technologies among sometimes diverse organizations.This paper will review the concept of “technology readiness assessments”, and provide a retrospective on the history of “TRLs” during the past 30 years. The paper will conclude with observations concerning prospective future directions for the important discipline of technology readiness assessments.  相似文献   

8.
On the basis of the experience gained during the previous french-russian missions on board MIR about the adaptation processes of the cardio-vascular system, a new laboratory has been designed. The objective of this “PHYSIOLAB” is to have a better understanding of the mechanisms underlying the changes in the cardio-vascular system, with a special emphasis on the phenomenon of cardio-vascular deconditioning after landing.

Beyond these scientific objectives, it is also intended to use PHYSIOLAB to help in the medical monitoring on-board MIR, during functional tests such as LBNP.

PHYSIOLAB will be set up in MIR by the French cosmonaut during the next french-russian CASSIOPEE mission in 1996. Its architecture is based on a central unit, which controls the experimental protocols, records the results and provides an interface for transmission to the ground via telemetry. Different specific modules are used for the acquisition of various physiological parameters.

This PHYSIOLAB under development for the CASSIOPEE mission should evolve towards a more ambitious laboratory, whose definition would take into account the results obtained with the first version of PHYSIOLAB. This “second generation” laboratory should be developed in the frame of wide international cooperation.  相似文献   


9.
In comparing the costs of different launch vehicles, the possibility of the risk of failure is assumed to be accounted for by the cost of insurance. The satellite may be insured against loss during launch, and the launch services provider may offer a “free relaunch.” However, actual costs of reliability and failure extend beyond this. Each failure necessitates an investigation and a “get well” programme by the operating agency, while putting the operations team “on hold” until services can resume. A commercial operator may also lose customer revenue and actual customers through loss of confidence or unavailability. Such costs tend to be hidden, and not evaluated in assessing the effectiveness of a system, but count towards total costs. Failure investigations help to improve system reliability, but this could equally have been achieved by expenditure in development and qualification. Reusable launch vehicles will have different costs associated with reliability and failure. The relationship between reliability and cost, properly assessed, ought to influence the design of both expendable and reusable launch systems.  相似文献   

10.
For several years, the “BNM-Laboratoire Primaire du Temps et des Fréquences” has worked on a cold atom frequency standard. With a cesium atomic fountain a resonance line width of 700 mHz has been obtained leading to a short-term stability of 2 × 10−13 τ−1/2 down to 2 × 10−15 at 104 s. A first evaluation of the fountain accuracy has been performed resulting in an accuracy of 3 × 10−15, three times better than previously achieved with thermal beams frequency standards. In the atomic fountain, gravity limits the interaction time to ˜1 s, hence the resonance line width to ˜0.5 Hz. A factor of 10 reduction in the line width could be obtained in a micro-gravity environment. The “Centre National d'Etudes Spatiales” (the French space agency), the “BNM-Laboratoire Primaire du Temps et des Fréquences”, the “Laboratoire de l'Horloge Atomique” and the “Laboratoire Kastler Brossel” have set up a collaboration to investigate a space frequency standard using cold atoms: the PHARAO project. A microgravity prototype has been constructed and operated first in the reduced gravity of aircraft parabolic flights in May 1997. It is designed as a transportable frequency standard. The PHARAO frequency standard could be a key element in future space missions in fundamental physics such as SORT (solar orbit relativity test), detection of gravitational waves, or for the realization of a global time scale and a new generation of positioning system.  相似文献   

11.
Space at Surrey has developed over 25 years from very modest beginnings in 1974 to an international space centre by 1998. It has pioneered small satellites and succeeded in launching 14 low cost but sophisticated microsatellites over the course of two decades. In the 1990s, small satellites have become fashionable—but this was not always so! This paper describes the 25 years history of “Space at Surrey”.  相似文献   

12.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1208-1215
Systems that depend upon the application of new technologies inevitably face three major challenges during development: performance, schedule and budget. Technology research and development (R&D) programs are typically advocated based on argument that these investments will substantially reduce the uncertainty in all three of these dimensions of project management. However, if early R&D is implemented poorly, then the new system developments that plan to employ the resulting advanced technologies will suffer from cost overruns, schedule delays and the steady erosion of initial performance objectives. It is often critical for senior management to be able to determine which of these two paths is more likely—and to respond accordingly. The challenge for system and technology managers is to be able to make clear, well-documented assessments of technology readiness and risks, and to do so at key points in the life cycle of the program.Several approaches have been used to evaluate technology maturity and risk in order to better anticipate later system development risks. The “technology readiness levels” (TRLs), developed by NASA, are one discipline-independent, programmatic figure of merit (FOM) that allows more effective assessment of, and communication regarding the maturity of new technologies. Another broadly used management tool is of the “risk matrix”, which depends upon a graphical representation of uncertainty and consequences. However, for the most part these various methodologies have had no explicit interrelationship.This paper will examine past uses of current methods to improve R&D outcomes and will highlight some of the limitations that can arise. In this context, a new concept for the integration of the TRL methodology, and the concept of the “risk matrix” will be described. The paper will conclude with observations concerning prospective future directions for the important new concept of integrated “technology readiness and risk assessments”.  相似文献   

13.
Yuri V. Trifonov 《Acta Astronautica》1996,39(9-12):1021-1024
The preliminary estimations show that the contemporary level of electronic and information engineering makes it possible to create a small s/c of 150–200 kg mass capable to solve both the problems of Earth remote sensing and many other applied and scientific problems orbiting the planets at 500–1000 km. In accordance with the fundamental criterion for choosing parameters of small multipurpose spacecraft the small UNISAT s/c has been created on the basis of a unified space platform. The design provides for s/c energetic, thermal and space-saving parameters satisfying the conditions for accommodation of various-purpose payload and a possibility of using relatively inexpensive and light launchers like “Start-1” mobile launch complexes. Space platform mass is 100–120 kg; permissible payloads (PL) mass is 40–80 kg; maximal average power consumption of the payload is up to 60 W; three-axes orientation accuracy up to 0.001 deg./s; s/c lifetime is not less than 3–5 years.  相似文献   

14.
Among the principal objectives of the Phase 1 NASA/Mir program were for the United States to gain experience working with an international partner, to gain working experience in long-duration space flight, and to gain working experience in planning for and executing research on a long-duration space platform. The Phase 1 program was to provide the US early experience prior to the construction and operation of the International Space Station (Phase 2 and 3). While it can be argued that Mir and ISS are different platforms and that programmatically Phase 1 and ISS are organized differently, it is also clear that many aspects of operating a long-duration research program are platform independent. This can be demonstrated by a review of lessons learned from Skylab, a US space station program of the mid-1970s, many of which were again “learned” on Mir and are being “learned” on ISS. Among these are optimum crew training strategies, on-orbit crew operations, ground support, medical operations and crew psychological support, and safety certification processes.  相似文献   

15.
This paper presents the review of results of the navigating experiments which have been carried out during flight of microgravitational space platform (MSP) Foton-M2 in May–June 2005. The brief characteristic of the created MIRAGE–M equipment consisting from magnitometric system and satellite radionavigation receiver is given. The measurements have allowed to restore unguided MSP movement and to estimate a level of microaccelerations (microgravitations) onboard during flight, and have provided precision time-position binding of the research experiments. The data from the equipments transmitted on the telemetering channel have allowed testing the information technologies of virtual support of experiments in space. Flight testing of the equipment has allowed make a conclusion on usefulness of accommodation onboard the small-sized auxiliary navigating system focused for work with users of research experiments. The experiments on MSP Foton-M2 are the development of experiments with MIRAGE equipment carried out in 1999 during flight time of MSP Foton-12 [N.D. Semkin, V.V. Ivanov, V.I. Abrushkin, V.L. Balakin, I.V. Belokonov, K.E. Voronov, The experiments with magnetic fields formed by technical equipment inside Foton-12 spacecraft: the results of the MIRAGE experiments, in: Proceedings of International Conference “Scientific and Technological Experiments on Russian Foton/Bion Recoverable Satellites: Results, Problems and Outlooks”, 25–30 June 2000, pp. 116–122; V.L. Balakin, I.V. Belokonov, V.V. Ivanov, “Determination of motion of spacecraft Foton-12 as a result of magnetic fields measurement in MIRAGE experiment”, pp. 231–238 (published in the same place)].Paper is executed within the framework of the grant of the Russian Fund of Fundamental Researches 06-08-00244.  相似文献   

16.
The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called “Bargouzin”.This paper describes the status of the presently studied RFBB concepts during its three phases.The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters (“Baikal” type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented.The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts.The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.  相似文献   

17.
Removal of the mechanical pressure gradient on the soles leads to physiological adaptations that ultimately result in neuromotor degradation during spaceflight. We propose that mechanical stimulation of the soles serves to partially restore the afference associated with bipedal loading and assists in attenuating the negative neuromotor consequences of spaceflight. A dynamic foot stimulus device was used to stimulate the soles in a variety of conditions with different stimulation locations, stimulation patterns and muscle spindle input. Surface electromyography revealed the lateral side of the sole elicited the greatest neuromuscular response in ankle musculature, followed by the medial side, then the heel. These responses were modified by preceding stimulation. Neuromuscular responses were also influenced by the level of muscle spindle input. These results provide important information that can be used to guide the development of a “passive” countermeasure that relies on sole stimulation and can supplement existing exercise protocols during spaceflight.  相似文献   

18.
The literature on the history of spaceflight has depicted the early 1950s Colliers articles mostly as a forerunner to the peaceful and scientific exploration of space. Yet the centerpiece of Wernher von Braun's plan was a manned space station that would serve as reconnaissance platform and orbiting battle station for achieving “space superiority” over the USSR. One its roles could be the launching of nuclear missiles. When challenged as to the station's defensibility, von Braun even posited pre-emptive atomic strikes from space as a response to the development of a hostile anti-satellite capability.  相似文献   

19.
A powerful statistical tool, paired-comparison, was tested as a method to determine the relative value American people place on two possibly competing paradigms in the United States Space Program: “Space as a Place to Explore” and “Civil and Commercial Uses of Space”. A limitation of the results, but not the methodology, is the participants were college students, not “voting” adults. Reliability and validity of items were developed and tested in two studies suggesting that the paired-comparison method is a reliable and powerful tool for measuring the relative value the public may place on programs within the US Space Program.  相似文献   

20.
The use of system models in the EuroMoon spacecraft design   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号