首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Nanoparticles with the anti-wear and friction reducing features were applied as cooling lubricant in the grinding fluid. Dry grinding, flood grinding, minimal quantity of lubrication(MQL), and nanoparticle jet MQL were used in the grinding experiments. The specific grinding energy of dry grinding, flood grinding and MQL were 84, 29.8, 45.5 J/mm3, respectively. The specific grinding energy significantly decreased to 32.7 J/mm3 in nanoparticle MQL. Compared with dry grinding, the surface roughness values of flood grinding, MQL, and nanoparticle jet MQL were significantly reduced with the surface topography profile values reduced by 11%, 2.5%, and 10%,respectively, and the ten point height of microcosmic unflatness values reduced by 1.5%, 0.5%,and 1.3%, respectively. These results verified the satisfactory lubrication effects of nanoparticle MQL. MoS2, carbon nanotube(CNT), and ZrO2 nanoparticles were also added in the grinding fluid of nanoparticle jet MQL to analyze their grinding surface lubrication effects. The specific grinding energy of MoS2 nanoparticle was only 32.7 J/mm3, which was 8.22% and 10.39% lower than those of the other two nanoparticles. Moreover, the surface roughness of workpiece was also smaller with MoS2 nanoparticle, which indicated its remarkable lubrication effects. Furthermore,the role of MoS2 particles in the grinding surface lubrication at different nanoparticle volume concentrations was analyzed. MoS2 volume concentrations of 1%, 2%, and 3% were used.Experimental results revealed that the specific grinding energy and the workpiece surface roughness initially increased and then decreased as MoS2 nanoparticle volume concentration increased.Satisfactory grinding surface lubrication effects were obtained with 2% MoS2 nanoparticle volume concentration.  相似文献   

2.
《中国航空学报》2022,35(11):85-112
It is an inevitable trend of sustainable manufacturing to replace flood and dry machining with minimum quantity lubrication (MQL) technology. Nevertheless, for aeronautical difficult-to-machine materials, MQL couldn’t meet the high demand of cooling and lubrication due to high heat generation during machining. Nano-biolubricants, especially non-toxic carbon group nano-enhancers (CGNs) are used, can solve this technical bottleneck. However, the machining mechanisms under lubrication of CGNs are unclear at complex interface between tool and workpiece, which characterized by high temperature, pressure, and speed, limited its application in factories and necessitates in-depth understanding. To fill this gap, this study concentrates on the comprehensive quantitative assessment of tribological characteristics based on force, tool wear, chip, and surface integrity in titanium alloy and nickel alloy machining and attempts to answer mechanisms systematically. First, to establish evaluation standard, the cutting mechanisms and performance improvement behavior covering antifriction, antiwear, tool failure, material removal, and surface formation of MQL were revealed. Second, the unique film formation and lubrication behaviors of CGNs in MQL turning, milling, and grinding are concluded. The influence law of molecular structure and micromorphology of CGNs was also answered and optimized options were recommended by considering diverse boundary conditions. Finally, in view of CGNs limitations in MQL, the future development direction is proposed, which needs to be improved in thermal stability of lubricant, activity of CGNs, controllable atomization and transportation methods, and intelligent formation of processing technology solutions.  相似文献   

3.
Grinding technology is an essential manufacturing operation, in particular, when a component with a superfinishing and an ultra-resolution is yearned. Meeting the required strict quality checklist with maintaining a high level of productivity and sustainability is a substantive issue. The recent paper outlines the lubrication and cooling technologies and mediums that are used for grinding. Furthermore, it provides a basis for a critical assessment of the different lubrication/cooling techniques ...  相似文献   

4.
(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.  相似文献   

5.
The effectiveness of grinding fluid supply has a crucial impact on grinding quality and efficiency in high speed grinding. In order to improve the cooling and lubrication, through in-depth research of self-inhaling internal cooling method and intermittent grinding mechanism, a new spray cooling method used in high speed grinding is proposed. By referring to the structure of bowl- shaped dispersion disk, the grinding wheel matrix with atomization ability is designed; through studying heat transfer of droplet collision and the influence of micro-groove on the boiling heat transfer, grinding segment with micro-groove is designed to enhance the heat flux of coolant and achieve maximum heat transfer between droplets and grinding contact zone. High-speed grinding experiments on GH4169 with the developed grinding wheel are carried out. The results show that with the micro-groove grinding wheel just 5.4% of pump outlet flow rate and 0.5% of spindle energy is needed to reduce the grinding temperature to 200℃, which means the developed grinding wheel makes cooling high efficient and low energy consuming.  相似文献   

6.
Particle-reinforcing titanium matrix composites(PTMCs) exhibit the sharp raising applications in modern industries owing to its extraordinary physical and mechanical properties. However, the poor grindability and unstable grinding processes due to the existence of TiC particles and TiB short fibres inside PTMCs, leading to the sudden grinding burn and low material removal rate.In this work, a novel radial ultrasonic vibration-assisted grinding(RUVAG) device with a special cross structure was dev...  相似文献   

7.
《中国航空学报》2023,36(7):25-39
Grinding is one of the most widely used material removal methods at the end of many process chains. Grinding force is related to almost all grinding parameters, which has a great influence on material removal rate, dimensional and shape accuracy, surface and subsurface integrity, thermodynamics, dynamics, wheel durability, and machining system deformation. Considering that grinding force is related to almost all grinding parameters, grinding force can be used to detect grinding wheel wear, energy calculation, chatter suppression, force control and grinding process simulation. Accurate prediction of grinding forces is important for optimizing grinding parameters and the structure of grinding machines and fixtures. Although there are substantial research papers on grinding mechanics, a comprehensive review on the modeling of grinding mechanics is still absent from the literature. To fill this gap, this work reviews and introduces theoretical methods and applications of mechanics in grinding from the aspects of modeling principles, limitations and possible future trendencies.  相似文献   

8.
为解决钛合金铣削加工中微量润滑系统工艺参数优化问题,采用正交试验法以空气流量、切削液用量、切削液浓度为变量,表面粗糙度Ra和切削力为评价指标开展钛合金微量润滑铣削试验。基于灰色关联和主成分分析法对微量润滑系统工艺参数进行多目标优化,通过分析各因素对灰色关联度的影响规律,确定了最佳系统参数组合为空气流量90L/min、切削液用量15mL/h、切削液浓度70%。经验证优化后的工艺参数可有效提高工件表面质量,减小切削力,为合理选择微量润滑系统工艺参数提供了参考依据。  相似文献   

9.
超声ELID 复合磨削磨削力模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以ELID 电解原理为基础,结合超声振动辅助磨削过程中单颗磨粒的运动学分析,建立了超声 ELID 复合磨削条件下的磨削力数学解析模型,并对模型进行了分析和仿真。对模型的分析表明:超声振动改 变了磨粒的运动轨迹,使同等条件下的未变形切屑厚度减小,砂轮的在线电解修整使磨粒始终处于锋锐状态, 而且影响砂轮的实际切削深度,进而对磨削力产生影响。磨削力随着超声振动频率、振幅、电解电压、脉冲比、 电解液电阻率的增大而减小;随着切削深度、工件速度的增大而增大。  相似文献   

10.
Too high grinding force will lead to a large increase in specific grinding energy, resulting in high temperature in grinding zone, especially for the aerospace difficult cutting metal materials,seriously affecting the surface quality and accuracy. At present, the theoretical models of grinding force are mostly based on the assumption of uniform or simplified morphological characteristics of grains, which is inconsistent with the actual grains. Especially for non-engineering grinding wheel,most g...  相似文献   

11.
镍基高温合金是航空发动机部件的常用材料,其磨削加工存在工具损耗严重、寿命短等难题。针对3种新研制的刚玉砂轮(分别为粒度60#的微晶和单晶混合磨料砂轮、粒度60#的单晶刚玉砂轮,以及粒度70#的单晶刚玉砂轮),开展了GH4169镍基高温合金材料的磨削试验,从磨削力、磨削温度、砂轮磨损以及表面粗糙度等方面对3种砂轮的磨削性能进行了评价。结果表明,3种砂轮磨削GH4169材料在砂轮磨损和表面粗糙度方面未表现出明显差异,而通过对磨削力和磨削温度的综合评价发现粒度60#的单晶刚玉砂轮的磨削性能更优。3种砂轮磨削GH4169材料的磨削比在0.5~3之间。在正常磨削条件下,3种砂轮的磨削表面粗糙度Ra小于0.4μm。同时发现,砂轮磨损(主要包括磨粒的破碎和脱落)是造成磨削表面缺陷形成的重要原因。  相似文献   

12.
《中国航空学报》2022,35(12):278-286
Nickel-based alloy has been widely used due to its outstanding mechanical properties. However, Nickel-based alloy is a typical difficult-to-machine material, which is a great constrain for its application in the manufacturing field. To improve the surface quality of the ground workpiece, a new high-shear and low-pressure grinding wheel, with high ratio of tangential grinding force to normal grinding force, was fabricated for the grinding of selective laser melting (SLM) manufactured Inconel718 alloy. The principle of high-shear and low-pressure grinding process was introduced in detail, which was quite different from the conventional grinding process. The fabrication process of the new grinding wheel was illustrated. A serial of experiments with different processing parameters were carried out to investigate the grinding performance of the developed grinding wheel via analyzing surface roughness and surface morphology of the ground workpiece. The optimal processing parameters of high-shear and low-pressure grinding were obtained. The surface roughness of ground workpiece was reduced to 0.232 μm from the initial value of 0.490 μm under the optimal grinding conditions. It was found that the initial scratches on the ground workpiece were almost completely removed after the observations with the metalloscopy and the field-emission scanning electron microscopy (FE-SEM). The capability of the newly developed high-shear and low-pressure grinding wheel was validated.  相似文献   

13.
《中国航空学报》2021,34(5):404-414
Fiber-reinforced silica ceramic matrix composites (SiO2f/SiO2) have gained extensive attention in recent years for its applications in aeronautics field such as radar radome and window. However, the machining properties and mechanism of the material remain unclear. The features and mechanical properties of the material itself have a significant influence on both its machining characteristics and surface integrity. Thus, a full-factor grinding experiment is conducted using a 3D orthogonal SiO2f/SiO2 aiming to obtain its machining characteristics. The effects of grinding parameters and tools on the grinding force, surface roughness, and material damage type are investigated using a dynamometer, Scanning Electron Microscope (SEM), and Acoustic Emission (AE) analysis. The AE frequency band is analyzed, and a semi-analytical force model is established to study the difference between a single grain and wheel grinding. It was found that the changes in surface roughness correlate with the changes in grinding force, with fiber fracture being the main reason behind the increase in grinding force. Finally, the material removal mechanism was studied based on the AE analysis. It was found that the removal mechanism is fiber fracture dominated with matrix crack and debonding, and the primary sources of energy consumption are fiber fracture and friction.  相似文献   

14.
利用一种新的迭代算法 ,分析了高速发动机油膜惯性对活塞裙润滑特性的影响 .该迭代方法是利用有限元法和差分法交替求解Navier Stocks方程和雷诺方程 ,据此导出了适用于高速发动机活塞裙的润滑计算的混和润滑雷诺模型 .新的模型借助惯性系数 ,引入了油膜惯性项 ;同时给出求解含有油膜惯性项的迭代步骤和有限元表达式。计算结果表明 :随着惯性系数和活塞裙的长径比的不同 ,油膜惯性会对油膜的摩擦力、压力和承载力产生不同的影响 ,这种影响对承载力尤为明显 .该润滑模型也可用于中、低速发动机的活塞裙润滑计算以及不计入惯性项 (惯性系数置为零 )的某些润滑问题求解 .  相似文献   

15.
《中国航空学报》2023,36(6):446-459
Cubic boron nitride (cBN) superabrasive grinding wheels exhibit unique advantages in the grinding of difficult-to-cut materials with high strength and toughness, such as titanium alloys and superalloys. However, grinding with multilayered metallic cBN superabrasive wheels faces problems in terms of grain wear resistance, the chip storage capability of the working layers and the stability and controllability of the dressing process. Therefore, in this work, novel metallic cBN superabrasive wheels with aggregated cBN (AcBN) grains and open pore structures were fabricated to improve machining efficiency and surface quality. Prior to the grinding trials, the air-borne abrasive blasting process was conducted and the abrasive blasting parameters were optimized in view of wear properties of cBN grains and metallic matrix materials. Subsequently, the comparative experiments were performed and then the variations in grinding force and force ratio, grinding temperature, tool wear morphology and ground surface quality of the multilayered AcBN grinding wheels were investigated during machining Ti–6Al–4V alloys. In consideration of the variations of grain erosion wear volume and material removal rate per unit of pure metallic matrix materials as the abrasive blasting parameters changes, the optimal abrasive blasting parameters were identified as the SiC abrasive mesh size of 60# and the abrasive blasting distance and time of 60 mm and 15 s, respectively. The as-developed AcBN grains exhibited better fracture toughness and impact resistance than monocrystalline cBN (McBN) grains because of the existence of metal-bonded materials amongst multiple cBN particles that decreased crack propagation inside whole grains. The metallic porous AcBN wheels had lower grinding forces and temperature and better ground surface quality than vitrified McBN wheels due to the constant layer-by-layer exposure of cBN particles in the working layer of AcBN wheels.  相似文献   

16.
《中国航空学报》2021,34(8):65-74
In this article, a grinding force model, which is on the basis of cutting process of single abrasive grains combined with the method of theoretical derivation and empirical formula by analyzing the formation mechanism of grinding force, was established. Three key factors have been taken into accounts in this model, such as the contact friction force between abrasive grains and materials, the plastic deformation of material in the process of abrasive plowing, and the shear strain effect of material during the process of cutting chips formation. The model was finally validated by the orthogonal grinding experiment of powder metallurgy nickel-based superalloy FGH96 by using the electroplated CBN abrasive wheel. Grinding force values of prediction and experiment were in good consistency. The errors of tangential grinding force and normal grinding force were 9.8% and 13.6%, respectively. The contributions of sliding force, plowing force and chip formation force were also analyzed. In addition, the tangential forces of sliding, plowing and chip formation are 14%, 19% and 11% of the normal forces on average, respectively. The pro-posed grinding force model is not only in favor of optimizing the grinding parameters and improving grinding efficiency, but also contributes to study some other grinding subjects (e.g. abrasive wheel wear, grinding heat, residual stress).  相似文献   

17.
Hole-making for Carbon Fiber Reinforced Plastics(CFRP)/Ti-6Al-4V stacks is crucial for the assembling strength of aircraft structure parts. This work carried out experimental work for helical milling(HM) of the stacks with sustainable cooling/lubrication(dry, MQL and cryogenic)conditions. Cutting forces and temperatures at the CFRP layer, Ti-6Al-4V layer and the interface of stacks were obtained by a developed measuring system. The temperatures in CFRP machining at cryogenic condition varied fro...  相似文献   

18.
磨削一般是零件加工的最后一道工序。磨削过程较为复杂,磨削力的大小不仅影响工件的表面质量,而且还影响零件的精度。在磨削机理研究及生产实际中常常需对磨削力进行测试,通过调整磨削用量,修整砂轮,实现在允许的磨削力范围内进行加工。提出了在磨床上安装测力系统,并采用单片机对磨削力信号进行实时采集处理,建立磨削力的经验公式,同时显示并打印结果。  相似文献   

19.
为了研究砂轮表面结构化对砂轮磨削性能的影响,利用脉冲激光对树脂结合剂金刚石砂轮进行了表面宏观结构化。采用6种不同类型的金刚石砂轮表面宏观结构进行了氧化铝的磨削实验,建立了激光宏观结构化金刚石砂轮的磨削力模型,比较了6种不同激光宏观结构化金刚石砂轮与非结构化砂轮在不同磨削参数下磨削力的差异,分析了砂轮制造后的表面形貌与结构化砂轮的磨损特性。实验结果表明,砂轮宏观结构化对磨削性能有很大影响,激光宏观结构化砂轮的磨削力可以减小2. 5%~24. 5%,砂轮结构化后的表面形貌出现石墨化现象;宏观结构化砂轮沟槽边缘磨损加剧,但沟槽磨损并没有明显加快宏观结构化砂轮的磨损。  相似文献   

20.
采用闭合场非平衡直流磁控溅射技术和阴极电弧离子镀技术在轴承钢表面分别制备了DLC 和
CrN 薄膜,在全配方发动机油(CF-4,15W/40)润滑条件下,选择DLC/ 钢、CrN/ 钢摩擦配副,用SRV-IV 摩擦实
验机考察了25℃和100℃时DLC 与CrN 薄膜在不同载荷下的摩擦因数和磨损率,并对摩擦界面进行分析。结
果表明:DLC 和CrN 薄膜在油润滑条件下的摩擦因数都随着载荷的增加而降低;DLC 和CF-4 构成的固液复合
润滑体系具有更加优异的摩擦学性能;活性较高的CrN 薄膜与发动机油中的添加剂相互作用,在摩擦界面上
发生摩擦化学反应形成摩擦化学反应膜,并且薄膜表面形成的氧化层有利于提高薄膜在高温时的耐磨性。
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号