首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
为了研究突肩叶尖吸力侧开槽对叶尖间隙泄漏流动换热特性的影响,采用标准k-omega两方程模型对不同突肩叶尖形式下的间隙泄漏流动进行了研究,研究的叶顶形状包括全突肩和3种部分突肩叶尖。详细分析了不同叶尖结构在3种间隙高度下的间隙泄漏流场,机匣压比,泄漏流量,总压损失和叶尖表面换热系数。结果表明:吸力侧前缘开槽可以改变前缘附近的间隙泄漏流路径,使得泄漏涡的形成位置后移,从而减小泄漏损失,但是效果微弱;吸力侧尾缘开槽可以改变开槽附近泄漏流体的流动路径,抑制其与主流的掺混,有效减小间隙泄漏损失,研究范围内最多减小8%。吸力侧前缘和尾缘开槽叶尖均会增加间隙泄漏流量,开槽长度越大泄漏流量越大,研究范围内最多增加32%。吸力侧前缘开槽会减小具有高换热系数的突肩表面积,增加凹槽表面换热系数;尾缘开槽会减小突肩表面积,增加凹槽底面的低换热系数区域的面积。  相似文献   

2.
为了分析不同叶尖形式下的间隙泄漏流动,采用标准k-ε两方程模型求解雷诺平均N-S方程组的数值方法,研究了突肩叶尖开槽对叶尖流动和冷却特性的影响,气膜孔位置、机匣相对运动和吹风比也在考虑范围之内,详细分析了间隙泄漏流场、泄漏流量、泄漏损失以及叶尖气膜冷却效率。研究结果表明:突肩叶尖前缘和尾缘开槽均会使间隙泄漏流量增大,且随着开槽长度的增加而增大。压力侧尾缘开槽会使间隙泄漏损失增大,叶尖气膜冷却效率略微降低;吸力侧尾缘开槽会使得部分泄漏流从开槽处流出间隙,抑制泄漏流与主流之间的掺混,从而减小泄漏损失,并且会使叶尖气膜冷却效率增大;吸力侧前缘开槽对间隙泄漏损失和叶尖气膜冷却效率没有明显影响,但是从前缘进入凹槽内的泄漏流会改变叶尖表面气膜冷却效率的分布。吹风比增大时叶尖结构对叶尖气膜冷却效率的影响减小。机匣相对运动会减小叶尖间隙泄漏流量、泄漏损失和叶尖气膜冷却效率,但是突肩开槽的影响规律不变。  相似文献   

3.
气膜孔位置对突肩叶尖气膜冷却效率的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
采用标准k-ε两方程模型求解雷诺平均Navier-Stokes方程组,研究了气膜孔位置对突肩叶尖间隙泄漏流场、气膜冷却效率和表面传热系数的影响,共模拟了3种气膜孔排布方式:中弧线气膜孔、吸力侧气膜孔、前缘气膜孔,考虑了间隙高度(t)和吹风比(M)的影响。研究结果表明:在冷气流量相同的情况下气膜孔位置对突肩叶尖气膜冷却效率影响很大,中弧线气膜冷却突肩叶尖在中弧线到压力侧突肩区域有较好的气膜覆盖;吸力侧气膜冷却突肩叶尖在中弦处的吸力侧突肩到中弧线区域和尾缘区域有较好的气膜覆盖;前缘气膜孔突肩叶尖在整个叶尖表面都有较好的气膜覆盖。间隙高度对不同突肩叶尖的影响不同。吹风比增大时前缘气膜孔突肩叶尖的气膜冷却效率增幅远大于其余两种排布方式。   相似文献   

4.
为有效抑制涡轮转子叶尖泄漏并改善叶尖热负荷,采用数值模拟的方法,对5种叶尖肋条结构的高压涡轮带气膜冷却突肩叶片流场进行计算,评估了不同叶尖肋条结构的气热性能。结果表明:在叶尖增加肋条结构能够有效调控叶尖空腔涡、刮擦涡、肋后涡和冷气肾形涡的路径,从而起到减小叶尖高表面传热系数区,提高叶尖平均气膜冷却效率的作用,同时有效降低了叶片压力侧前缘进入的泄漏流量,使得总压损失系数下降。凹槽尾缘压力侧半肋条结构具有最佳的气热性能,对泄漏流的阻碍作用最好,与无肋条情况相比,其叶尖平均表面传热系数降低了20.1%;平均气膜冷却效率提升了24.3%。  相似文献   

5.
冲击式凹槽叶尖流动换热特性   总被引:3,自引:2,他引:1  
针对冲击式凹槽叶尖的流动换热特性,采用数值模拟方法,详细分析了三种冲击式凹槽结构和三种凹槽助肋结构的间隙泄漏流场、叶尖二次流损失、叶尖总压损失系数和叶尖表面传热系数,同时考虑了助肋位置、数量和凹槽深度的影响。结果表明:叶尖凹槽前缘助肋抑制了间隙泄漏涡吸力侧分支,增强了泄漏流在凹槽内的分离流动。同一凹槽深度,双助肋凹槽叶尖的相对总压损失最小,研究范围内减小约13%。冲击式凹槽叶尖增强了泄漏流在凹槽内的掺混流动,减小了泄漏流的动能。同一凹槽深度,冲击式双助肋凹槽叶尖的相对总压损失最小,研究范围内减小约18%。冲击式凹槽叶尖减小了泄漏流在凹槽底面的再附,增大了泄漏流在叶尖突肩壁面的再附,突肩壁面出现高传热系数区域。   相似文献   

6.
高压涡轮尾切凹槽叶尖冷却换热特性   总被引:2,自引:1,他引:1  
为研究尾切凹槽状涡轮叶片叶尖的表面换热,通过瞬态风洞实验得到无冷却和带除尘孔两种情况下叶尖表面传热系数,并将其与数值模拟结果进行对比,实验结果的不确定度小于5%。分析叶尖间隙流场情况,无冷却时,由于腔底的空腔涡和凸肩壁的分离泡,高表面传热系数集中在压吸力侧凸肩和腔底前缘处;腔底后半段沿压力侧存在条状低表面传热系数分布。有除尘孔冷却时,冷却气体分为高低能两股流体,高能流体随泄漏流流出,造成吸力侧凸肩存在多段高表面传热系数集中分布;低能流体紧贴凹槽压力侧向后流动,对应位置冷却效率可达0.4以上。   相似文献   

7.
端壁转动对凹槽叶尖流动换热性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
皮骏  杜旭博  孔庆国  刘光才 《推进技术》2019,40(5):1005-1014
为了研究端壁转动对跨声速凹槽叶尖流动换热性能的影响,采用数值方法,详细研究了三种冷却孔结构凹槽叶尖在端壁转动条件下的叶尖间隙流场、冷却流流态、气膜冷却效率、叶尖表面换热系数和叶尖泄漏流量,同时考虑凹槽深度和端壁转动速度的影响。结果表明:端壁转动在叶尖凹槽内形成与泄漏流分离涡方向相反的旋涡,使泄漏流在凹槽底面的再附增强,在凹槽突肩的再附减弱。端壁转动能减少叶尖泄漏流量,研究范围内,叶尖相对泄漏流量最多减小20%。随着凹槽深度增大,叶尖平均气膜冷却效率随之增大,叶尖平均换热系数和叶尖泄漏流量随之减小。随着端壁转速减小,叶尖泄漏流量随之增大,压力侧和吸力侧冷却孔模型的叶尖平均气膜冷却效率随之减小,而中弧线冷却孔模型的叶尖平均气膜冷却效率随之增大。压力侧喷入冷却气流,叶尖的气膜冷却效果最好。  相似文献   

8.
开口双肋凹槽式涡轮叶顶间隙流动数值研究   总被引:4,自引:4,他引:0       下载免费PDF全文
为研究改进的双肋凹槽叶顶结构对大折转角动叶间隙泄漏流动的影响,利用数值模拟的手段,对五种不同叶顶结构在低马赫数为0.3条件下的泄漏损失以及流动特性进行详细的研究分析。数值计算与实验测量结果进行对比校核以保证数值计算的可靠性。研究结果表明,改进的前尾缘开口的凹槽式叶顶结构使得叶栅总压损失降低7.4%,与前缘不开口的方案相比,间隙泄漏损失变化率降低23%,这对涡轮长期运行维持高效的性能有利。改进的叶顶结构对间隙内的流量分布影响明显,压力侧的泄漏流量减少26.7%,而吸力侧增加13.3%。前缘开口形式结构使得压力侧泄漏的驱动压差降低50%,并改变吸力侧泄漏流的流量系数,同样出口气流角展向分布和叶栅流道中的泄漏涡和通道涡均受到明显影响。  相似文献   

9.
隔板与机匣之间留有间隙,间隙的存在势必会对超声速膨胀器的内部流场和总体性能产生影响,为了获得超声速膨胀器内部间隙流动的流动细节,采用三维雷诺平均Navier-Stokes方程和标准k-ε湍流模型,就顶部间隙对超声速膨胀器流动特性的影响进行了数值研究。结果表明:膨胀流道出口斜激波导致吸力面压力高于压力面,隔板尾缘附近部分泄漏流体经间隙流回压力面侧;间隙的存在导致吸力面进口及中、后部近下端壁压力上升,而压力面前缘附近压力下降,对比同一隔板位置,间隙高度每增加1%喉部高度,超声速膨胀器隔板载荷系数最高下降2.6%;端壁损失和斜激波损失降低,但产生了泄漏损失,三维流道内总的流动损失增加,膨胀器效率降低,本文研究范围内效率最多下降8.8%;马蹄涡、泄漏涡及二者之间的相互作用是顶部区域的主要涡系结构;前缘附近气流经间隙流到吸力面侧和尾缘附近泄漏流体越过间隙重新流回压力面侧是间隙内气流的主要运动形式。  相似文献   

10.
翼梢小翼对涡轮间隙泄漏流动影响的数值研究   总被引:9,自引:5,他引:4       下载免费PDF全文
转子叶片叶尖增加翼梢小翼是控制涡轮间隙泄漏流减小泄漏损失的有效手段之一,为研究翼梢小翼位置对高压涡轮间隙泄漏流动的影响,利用数值模拟方法求解雷诺平均纳维-斯托克斯方程获得涡轮通道内的三维流场,并详细分析叶片压力边和吸力边增加翼梢小翼对间隙泄漏流及涡轮气动损失的影响。研究发现:压力边翼梢小翼可以降低间隙泄漏流量,但基本不改变间隙泄漏涡结构,对涡轮效率影响较小;吸力边翼梢小翼虽然对降低间隙泄漏流量作用不明显,但可以有效地抑制泄漏涡的生成和发展并削弱叶片吸力面壁面潜流,降低泄漏流动损失。结果表明:在控制间隙泄漏流动减小泄漏损失方面,吸力边翼梢小翼明显优于压力边翼梢小翼。  相似文献   

11.
对某型航空发动机高压涡轮转子叶片通过相似变换得到的低速叶型进行研究,探讨叶尖机匣相对运动条件下,叶顶喷气对凹槽叶尖气动性能的影响。结果表明:叶顶喷气对平叶尖的气动性能影响有限,但会降低凹槽叶尖效率;在相同喷气条件下,使用凹槽叶尖相比于使用平叶尖可降低20%的叶尖泄漏损失;泄漏流在凹槽内部的能量耗散主要来自于泄漏流动与凹槽涡和刮削涡的相互作用,在喷气条件下,刮削涡仍然是泄漏流动的主要控制结构。喷气位置对凹槽叶尖性能有显著的的影响;在靠近吸力侧和前缘布置喷气孔,有利于凹槽气动性能的提升;基于以上研究,建立可用于凹槽叶尖的泄漏流动损失模型,新模型相比Denton模型误差降低了31.6%。   相似文献   

12.
涡轮叶尖泄漏流被动控制数值模拟   总被引:8,自引:4,他引:4       下载免费PDF全文
结合基于密度修正的采用雷诺应力湍流模型加壁面函数的三维计算流体力学程序,通过在叶尖吸力面表面加肋条的被动控制方法以期减小叶尖间隙泄漏流动带来的损失,对某一轴流涡轮转子叶尖间隙泄漏流场的被动控制进行了数值模拟研究,并详细分析了在不同肋条高度下泄漏流场细节,最后计算了涡轮效率。结果表明,在涡轮叶尖表面沿吸力面边缘镶肋条对泄漏流动进行被动控制,相对于与其相对叶尖间隙高度相等的基本间隙流场,涡轮效率增大;肋条高度对涡轮效率有较大影响,相对等绝对叶尖间隙高度的基本流场,增大肋条高度可以提高涡轮效率。在叶尖间隙区域前半部,肋条对泄漏流动的阻挡作用使得在叶尖表面出现回流区,阻碍泄漏流动;在叶尖间隙区域后半部,回流区消失。  相似文献   

13.
摘要:为了揭示对转压气机下游转子外伸激波对上游转子泄漏流的影响规律,针对上游转子叶顶间隙分别为0.2、0.5、0.8 mm的对转压气机开展了非定常数值模拟研究。研究发现:受下游转子外伸激波掠扫影响,上游转子尾缘附近压力面会形成弱压缩波,且随上游转子泄漏流增强而逐渐减弱;而该外伸激波在上游转子尾缘附近吸力面,会形成与型线切向相垂直的较强压缩波,且其位置基本不受叶顶间隙大小影响;外伸激波使上游转子尾缘附近吸、压力面压差增大,叶顶泄漏流增强,进而导致其损失增大;随着叶顶间隙增大,上游转子叶尖区弦长前半段压力波动的频率,由通道激波转为叶顶泄漏流主导,且呈现减小的趋势,而弦长后半段压力波动的频率主要由外伸激波主导,且基本不变。   相似文献   

14.
涡轮转子凹槽叶尖泄漏流动气动热力特征   总被引:3,自引:2,他引:1       下载免费PDF全文
为探索总结凹槽叶尖泄漏流动气动热力特征,利用实验和数值模拟方法,对叶尖凹槽内部旋涡相互作用机理和叶顶流动换热与泄漏流能量再分布等问题进行研究,并对凹槽叶尖参数化设计方法进行探讨。结果表明:搭建的考虑多因素实验台和可视化泄漏流动测量方案可以精确地捕捉到叶顶区域的流动结构;刮削涡在凹槽中起到"气动篦齿"作用,其形态特征的变化直接影响凹槽叶尖对泄漏流动的控制效果;高温泄漏流流体对叶片表面的冲击是叶尖热负荷提高的主要原因;合理选择叶尖气动参数和凹槽的几何参数可以有效控制刮削涡形态,最终提升叶尖气动热力性能。  相似文献   

15.
涡轮叶尖镶嵌肋条对泄漏流场的影响   总被引:5,自引:1,他引:4  
结合基于压力修正的采用雷诺应力湍流模型加壁面函数的三维计算流体力学程序,通过沿着叶尖表面加肋条以期减小叶尖间隙泄漏损失,对某一轴流涡轮转子叶尖表面镶嵌肋条对泄漏流场细节的影响进行了数值研究,并详细分析了不同肋条高度和肋条宽度对泄漏流场的影响.结果表明:肋条使得气流通过压力面肋条时出现分离形成回流区,阻碍泄漏流动,减小泄漏损失;肋条高度h对涡轮效率有较大影响,且有个最佳肋条高度值,在最佳肋条高度下涡轮效率提高0.13%;肋条宽度w对流场影响不大,但小肋条宽度形成较大的空腔,可以稍提高涡轮效率.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号