首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
在80-500km范围内考虑了3种中性成份的4种离子,从严格的电子和离子密度连续方程出发,对中性风和扩散效应进行了全面、连续的考虑,由此建立了一种电离层的物理模式;在此模式的基础上针对北京地区分别对太阳活动低年(F10.7=60)、高年(F10.7=300)的春(DOY=90)、夏(DOY=180)、秋(DOY=270)、冬(DOY=365)进行计算,并将所得结果与IRI-90进行了比较.结果表明: E层为典型的Chapman层: E-F谷区深度一般为0.2-0.5之间,比IRI要深;F1缘在太阳活动低年的四季都出现,其中夏天最明显,已形成了一个F1层,冬天最不明显,仅表现为一个轻微的凸缘,在太阳活动高年只有夏天出现了F1凸缘,这与现有理论相符合,而IRI-90较少出现明显的F1缘;F2层的电子密度是活动高年比低年大,平均冬天比夏天大,这与观测结果也基本符合.   相似文献   

2.
本文给出了计算中纬E层临界频率(f0E)和低电离层的电子密度分布与太阳天顶角、太阳黑子数、地方时之间关系的经验公式.由它对不同年、月、日以及午前、午后情况进行计算的结果与实验探测数据符合得较好;将该公式用于长波传播和吸收计算也得到了与实验一致的结果.此外, 它还能由实测的f0E值算出D区电子密度分布.   相似文献   

3.
一种电离层物理模型及其在F1谷区形成讨论中的应用   总被引:5,自引:2,他引:5  
高铭  肖佐 《空间科学学报》1992,12(4):289-297
在电离层F区考虑了三种中性成分的4种离子(O~+、No~+、N_2~+和O_2~+),从严格的电子和离子密度连续方程出发,由中性风所满足的动力学方程和离子运动方程解出水平中性风,从而得到离子垂直漂移速度,由此建立了一种电离层的物理模式;并用此模式,针对我国中、低纬(116°E,30°N)地区,讨论了光化学作用对F_1层的影响和动力学效应在F层中的作用。着重讨论由水平中性风引起的离子垂直漂移运动对F_1谷区的影响。结果表明:在光化平衡模式下,E区明显形成。在太阳活动低年夏季可产生明显的F_1“凸缘”。但仅靠光化平衡作用不能产生深的F_1谷区,也不能解释F_2层的形成;双极扩散是F_2层形成的主要机制;中性风的因素对E层影响不大,却可以在太阳活动低年夏季产生谷深在0.05—0.1的深F_1谷区。用此模式还计算了F_1谷区日变化,结果表明:中性风影响模式能较好地反映我国中低纬地区F_1谷区变化的地域特征。  相似文献   

4.
日照边缘区域电离层对耀斑的响应特点研究   总被引:1,自引:1,他引:0  
利用MSIS模型和背景太阳辐射谱模型,在一定大耀斑辐射谱假设的前提下,计算了耀斑期间日照边缘区域的电子产生率,分析了这一区域电离层电子密度的变化特点.结果表明,大耀斑期间在日照边缘区域,甚至大于太阳天顶角90°的区域都有明显的电子产生率的增加.从不同太阳天顶角处的电子产生率剖面的形态来看,随着天顶角的增加最大电离率减少,但高度增加.计算还显示了在太阳天顶角小于90°的区域内电子产生率的垂直分布有明显的双峰结构,这种结构对应着电离层的E区和F区,但在天顶角大于90°区域,F区的电子产生率要大得多.考虑到离子和电子的复合过程,这一区域的总电子含量的增加主要产生在高F区.   相似文献   

5.
太阳活动对电离层TEC变化影响分析ormalsize   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究太阳活动对电离层TEC变化的影响,从整体到局部分析了2000—2016年的太阳黑子数、太阳射电流量F10.7指数日均值与电离层TEC的关系,并重点分析了2017年9月6日太阳爆发X9.3级特大耀斑前后15天太阳活动与电离层TEC变化的相关性.结果表明:由2000—2016年的数据整体看来,太阳黑子数、太阳F10.7指数、TEC两两之间具有很强的整体相关性,但局部相关性强弱不均;此次耀斑爆发前后太阳黑子数、太阳F10.7指数和TEC具有很强的正相关特性,太阳活动对TEC的影响时延约为2天;太阳活动对全球电离层TEC的影响不同步,从高纬至低纬约有1天的延迟,且对低纬度的影响远大于中高纬度.太阳活动是影响电离层TEC变化的主要原因,但局部也可能存在其他重要影响因素.   相似文献   

6.
银河宇宙线在电离层D层中电离的全球分布   总被引:2,自引:1,他引:1  
本文从带电粒子对D层大气电离出发, 给出了宇宙线相对论粒子、非相对论粒子及低能粒子在地球大气中的电离公式, 从而给出了宇宙线在电离层D层中电子产生率q(h)和电子密度N(h)的全球分布.结果表明, 宇宙线产生的q(h)和N(h)具有明显的纬度效应, 在极区产生的q(h)和N(h)要比低纬高得多, 当截止刚度Rc=10—18GV时, q(h)的变化相差很小.太阳活动11年调制对q(h)的影响是明显的, 但远小于Rc对q(h)的影响.大气密度ρ(h)对q(h)的影响主要是随高度的变化.   相似文献   

7.
太阳活动与热层大气密度的相关性研究   总被引:3,自引:2,他引:1  
为分析太阳活动对热层大气的影响,使用250km,400km,550km高度处热层大气密度与太阳F10.7指数数据,研究了二者的周期变化及相关关系. 结果表明,热层大气密度的变化与太阳活动呈现相似的变化趋势;两者均具有显著的27天及11年周期变化特征,热层大气密度还存在7~11天及0.5年和1年的变化特征,且高度越高越明显;热层大气密度对太阳活动的最佳响应滞后为3天,无论何种地磁活动水平下,400km高度处相关性高于250km,550km处相关性最小,且太阳活动下降相期间高于上升相;250km,400km和550km高度处热层大气密度和太阳活动的统计结果分别为饱和、线性和放大关系;高度越高的热层大气密度对太阳活动响应越敏感.   相似文献   

8.
对2003年(太阳活动较高年)至2007年(太阳活动低年) CHAMP卫星的热层大气密度观测数据进行了经验正交函数(EOF)分析, 得到了400 km高度上白天平均大气密度ρ的太阳活动周变化与年度变化等不同变化分量. 研究结果表明, ρ受太阳活动影响较大, 其太阳周变化分量与F10.7指数变化之间的相关系数可高达94.5 %; ρ的太阳周变化分量随纬度增加而减小, 且在中高纬地区, 南半球的值明显大于北半球的值, 在低纬地区则出现基本对称的双峰分布, 即赤道质量密度异常(EMA)结构. 在ρ的年变化中, 呈现出明显的季节变化, 即夏季低冬季高; 同时ρ的年变化幅度随太阳活动增加而增强, 随纬度增加而增强. 将本文结果与经验模式NRLMSISE00在观测条件下的输出数据进行对比, 发现两者的太阳周变化与年变化分量基本一致, 但本文观测数据的太阳周成分随纬度变化略小, 年变化幅度略大, 且NRLMSISE00模式不能再现EMA结构. 研究结果对揭示热层气候学变化特征具有重要意义.   相似文献   

9.
本文利用电离层电子密度的理论计算模式,研究了一氧化氮对中、低纬度100-200km间电子密度的影响,发现电子密度与一氧化氮密度间存在着正、负相关。正相关,只有当这一光电离成为一氧化氮离子的主要生成源时才出现。   相似文献   

10.
利用最新的NO经验公式,计算了近两个太阳活动周期100-200km间NO的冷却率,研究了太阳和地磁活动对NO和O冷却率的影响。进一步证明了NO冷却是120km以上热层的主要冷却过程。   相似文献   

11.
High resolution electron density measurements from Arecibo incoherent scatter (i.s.) radar are used to make a detailed study of the E-F valley. Features of the important valley parameters like height, width and depth are examined. These features are then compared with the available theoretical and empirical models. The depth of the valley obtained from the empirical models agrees with i.s. measurements for near-noon periods, but disagrees with these measurements for pre-noon and post-noon periods. Further, the i.s. measurements indicate that E-F valley is rather small during daytime as compared to models which give larger width. During the night, the valley is quite wide and deep but the presence of sporadic-E (Es) contaminates the Ne-h profiles observed with the i.s. radar. As a result the valley parameters cannot be determined unambiguously during the night.  相似文献   

12.
Our empirical model of electron density (ne) for quiet and weakly disturbed geomagnetic conditions (Kp not greater 4) takes account of comparative analysis of existing models and of experimental data obtained by rockets and incoherent scatter radar. The model describes the ne distribution in the 80 to 200 km height range at low and middle latitudes, and to some extent, in the subauroral region. It is presented in analytical form thus allowing one to calculate electron density profiles for any time. The electron density distribution at 140 km depends on the season (day of the year) and on the solar zenith angle. Profile variations during the day are for one season shown. Different from other models, ours specifies the variations during sunrise and sunset and reflects the particular profile shape at night admitting the occurrence of an intermediate layer.  相似文献   

13.
A study on the variability of the equatorial ionospheric electron density was carried out at fixed heights below the F2 peak using one month data for each of high and low solar activity periods. The data used for this study were obtained from ionograms recorded at Ilorin, Nigeria, and the study covers height range from 100 km to the peak of the F2 layer for the daytime hours and height range from 200 km to the peak of the F2 layer for the nighttime hours. The results showed that the deviation of the electron density variation from simple Chapman variation begins from an altitude of about 200 km for the two months investigated. Daytime minimum variability of between 2.7% and 9.0% was observed at the height range of about 160 and 200 km during low solar activity (January 2006) and between 3.7% and 7.8% at the height range of 210 and 260 km during high solar activity (January 2002). The nighttime maximum variability was observed at the height range of 210 and 240 km at low solar activity and at the height range of 200 and 240 km at high solar activity. A validation of IRI-2007 model electron density profile’s prediction was also carried out. The results showed that B0 option gives a better prediction around the noontime.  相似文献   

14.
The D-region IRI profiles are compared with the direct rocket measurements as well as with ground-based radio observations by a variety of techniques. The characteristics of D-region IRI profiles and the dependence of electron density on solar zenith angle, sunspot number, latitude and season are discussed. The sensitivity of certain reflection coefficients on the height distribution of electron density below 70 km is illustrated with a typical example. For D-region modelling, the results show the importance of simultaneous measurement of reflection and conversion coefficients together with polarization phase over a wide frequency range.  相似文献   

15.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

16.
本文对Chapman阳光掠射函数[Ch(z_p,χ)]进行了数值积分,求得了其在实际模式大气中随观测高度z_p及天顶角χ的变化.计算并讨论了低热层高温度梯度、分子与湍流扩散、重力场及太阳活动对 Ch(z_p,χ)的影响.结果表明,在150 km以下,Ch(z_p,χ)与前人用等标高模式及等标高梯度模式的计算结果差别较大.其中高温度梯度的影响起主导作用.特别是太阳活动对Chapman函数影响较显著,高年与低年之间可变化10—40%(在大天顶角时),这有可能推动热层大气中辐射-光化学-动力学耦合关系的变化.  相似文献   

17.
Models of the Venus neutral upper atmosphere, based on both in-situ and remote sensing measurements, are provided for the height interval from 100 to 3,500 km. The general approach in model formulation was to divide the atmosphere into three regions: 100 to 150 km, 150 to 250 km, and 250 to 3,500 km. Boundary conditions at 150 km are consistent with both drag and mass spectrometer measurements. A paramount consideration was to keep the models simple enough to be used conveniently. Available observations are reviewed. Tables are provided for density, temperature, composition (CO2, O, CO, He, N, N2, and H), derived quantities, and day-to-day variability as a function of solar zenith angle on the day- and nightsides.Estimates are made of other species, including O2 and D. Other tables provide corrections for solar activity effects on temperature, composition, and density. For the exosphere, information is provided on the vertical distribution of normal thermal components (H, O, C, and He) as well as the hot components (H, N, C, O) on the day- and nightsides.  相似文献   

18.
During solar flares, the X-ray radiation suddenly increases, resulting in an increase in the electron density of the atmospheric D region and a strong absorption of short-wave radio waves. Based on Langfang medium frequency (MF) radar, this paper analyzed the variation characteristics of D region in the lower ionosphere from 62 km to 82 km. The analysis focused on multiple C-level and M-level solar flare events before and after the large-scale flare event at 11:53 (UT) on September 6, 2017. The results show that it is difficult to detect the electron density over 70 km in Langfang during solar flares, but the electron density value can be obtained as low as 62 km, and the stronger the flare intensity, the lower the detectable electron density height. Besides, the equal electron density height, the received power of X and O waves will also be significantly reduced during the flares, and the reduction of equal electron density height has a weak linear relationship with flare intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号