首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
3234中温固化环氧树脂体系的固化反应动力学研究   总被引:9,自引:0,他引:9  
采用差示扫描量热法(DSC)在等温和动态条件下对3234中温固化环氧树脂体系的固化反应动力学进行了研究,建立了固化反应动力学方程;并模拟实际固化温度历程,采用测定不同固化阶段样品残余反应热的方法对固化反应动力学方程进行了验证。结果表明,3234中温固化环氧树脂体系的固化反应动力学符合自催化反应动力学模型,动态实验得到的固化反应动力学方程与验证结果符合得较好。  相似文献   

2.
采用DSC方法分析了RTM工艺用6421双马树脂的固化反应,确定了固化度与温度和固化反应速率与时间之间的关系,基于Melak方法分析了固化反应过程,通过数据拟合法得到了n级固化模型、自催化模型及Kamal模型方程中的各个参数值。根据相关系数R2确定了适合的动力学模型。结果表明,6421双马树脂的固化度—温度曲线呈现"S"型,固化反应速率随升温速率的增大而增大;树脂固化反应的表观活化能Ea为105.611 kJ/mol,其固化动力学模型符合Kamal固化模型,模型方程对实验数据拟合结果良好。  相似文献   

3.
酚醛树脂的交联固化成型过程对蜂窝材料生产工艺、产品性能有重要的影响,为了进一步了解树脂的固化过程及工艺参数,稳定产品质量,本试验采用示差扫描量热法(DSC)研究了蜂窝用酚醛树脂体系的固化反应动力学参数,为确定固化工艺参数提供依据。  相似文献   

4.
采用DSC方法研究RTM专用双马来酰亚胺树脂的固化动力学模型与固化动力学参数。用恒温和动态两种方法分析其固化反应;采用Melak方法和Kissinger方法进行数据处理。结果表明,RTM专用双马来酰亚胺树脂的固化动力学模型符合n级固化反应方程,用Melak计算方法建立的方程较好地描述了其固化过程,且与实验数据拟合结果较好。  相似文献   

5.
硝酸酯增塑聚醚推进剂药浆固化反应研究   总被引:1,自引:3,他引:1       下载免费PDF全文
唐汉祥  吴倩  陈江 《推进技术》2003,24(2):175-178
从推进剂药浆固化的动态流变特征出发,用DRA动态流变学方法研究了硝酸酯增塑聚醚推进剂的固化反应动力学。结果表明:它可提供推进剂药浆固化的表观凝胶化时间和固化反应的表观活化能;活化能随动态条件的不同而异,具有明显的固化反应指纹特征;动态流变学方法可对药浆直接进行固化反应动力学研究。对于深入研究推进剂性能将有很好的实际意义。  相似文献   

6.
用DSC研究了RFI工艺用环氧树脂的固化过程,研究表明:该固化反应较复杂,其反应动力学方程为dα/dt=2.27×10^4exp(-4764.65/T)(1-α)^0.861.为RFI用环氧树脂固化工艺的确定提供了理论依据.  相似文献   

7.
为了探究新型韧性固化剂的工艺使用方法,采用非等温差示扫描量热(DSC)法研究了三臂聚醚胺(TAPE)固化剂与4,4’—二氨基二苯甲烷环氧树脂(AG-80)和4—(二缩水甘油基氨基)苯基缩水甘油醚(AFG-90)的固化反应动力学,以Málek法和等转化率法对体系的动力学模型和固化反应机理进行了判定,并对两种体系的力学性能进行了探究。结果表明:两种环氧体系的固化起始放热温度50℃左右,具有良好的反应活性;体系的固化反应过程符合Sestak-Berggren动态[SB(m,n)]模型;两种体系的断裂伸长率大于3.74%,具有良好的反应活性和韧性。  相似文献   

8.
制备了苯并噁嗪树脂/BMI/环氧树脂三元体系,采用动态DSC分析了三元体系的固化反应过程。并用Kissinger和Ozawa方法分别求得三元体系的反应活化能为89.5 kJ/mol。由Crane理论计算得到该体系的固化反应级数n=0.93级反应;根据计算的动力学参数,建立了三元体系的固化动力学模型。利用所建立的固化动力学模型分别预测了等温和动态条件下,三元体系的固化反应特性。得到了三元体系的固化工艺为180℃/1 h+200℃/2 h+230℃/2 h,后处理工艺为250℃/2 h。  相似文献   

9.
氰酸酯/环氧树脂共混体系固化反应   总被引:2,自引:2,他引:0       下载免费PDF全文
运用DSC对F44酚醛环氧树脂、E51环氧树脂以及有机锡(DBTDL)与氰酸酯共混体系固化行为进行了研究,对固化动力学、固化反应机理及固化反应制度进行了分析.结果表明,利用Kissinger和Flynn-Wall-Ozawa方程计算所得的活化能相近,且三种相近树脂共混体系具有较低的活化能,即具有较高的反应活性.采用T-β外推法近似求得三种氰酸酯共混体系的固化制度.  相似文献   

10.
研究了一种有机硅改性环氧树脂的固化反应。利用红外光谱法分析了树脂的组成结构,固化剂的选择及其用量的确定,并利用DSC对固化反应动力学进行了研究,计算出了固化反应的动力学常数,对固化反应的机理进行了分析。结果表明:该有机硅改性环氧树脂是由苯基硅树脂与E型环氧树脂相互反应而合成的,可采用聚酰胺在室温下进行固化,固化反应主要发生在环氧基与伯胺之间,反应的表观活化能为67.555 kJ/mol,频率因子为1.48×106s-1。本研究可为该有机硅改性环氧树脂成型工艺的制定提供理论指导。  相似文献   

11.
HTPB推进剂贮存寿命的理论预估   总被引:3,自引:2,他引:1       下载免费PDF全文
以HTPB推进剂化学老化机理及其氧化反应动力学为依据,导出了推进剂应变保留值与贮存老化时间的关系,由推进剂中氧化剂AP低温分解反应和HTPB固化体经反应的动力学参数,计算出了在不同应变保留值时的推进剂的贮存寿命。当推进剂的应变保留值在30%~50%之间时,其贮存寿命的理论计算值与高温加速老化实验值之间的相对误差小于16%。  相似文献   

12.
复合材料层板固化全过程残余应变/应力的数值模拟   总被引:1,自引:0,他引:1  
采用商业软件对带有铝板的复合材料层板固化全过程残余应变/应力进行数值模拟计算。在固化过程的模拟中,应用有限元法计算复合材料层板热-化学模型,有限差分法计算固化动力学模型,通过设置较小的时间步实现求解两个模型强耦合的关系。在残余应力数值模拟中,化学收缩引起的应变在每一计算步以初始应变施加在复合材料结构上。基于以上技术,对带有铝合金的复合材料层板固化全过程残余应变/应力演化进行数值模拟,并分析纤维方向和垂直纤维方向复合材料的残余应变/应力演化历程。通过与试验中层板曲率的比较,验证文中模型计算的准确性。  相似文献   

13.
针对以改性双马来酰亚胺树脂(BMI)为基体的树脂膜熔渗(RFI)成型工艺,以三维热传导方程与固化动力学模型为控制方程,采用有限元/有限差分方法对所得方程进行离散求解。为了衡量固化质量,提出了两个新的控制参数,并用于最优固化温度控制工艺的模拟。数值结果表明,构件内部温度与固化度均高于表面,而固化保持温度和起始时间会对构件中温度和固化度的均匀性产生较大影响。数值模拟结果对固化过程的优化设计有重要的指导意义。  相似文献   

14.
OoA成型T800/607复合材料制备及性能   总被引:2,自引:2,他引:0       下载免费PDF全文
采用非等温DSC对非热压罐(OoA)成型环氧树脂基体607进行了固化动力学研究,确定了树脂的固化动力学方程。制备了T800/607热熔预浸料和复合材料单向板,并比较了热压罐和OoA成型工艺下T800/607复合材料的性能。结果表明:该类预浸料室温储存期大于30 d,OoA成型质量优异,复合材料孔隙率远低于1%。OoA成型复合材料的弯曲强度为1 480 MPa,层剪强度为96.7 MPa,与在热压罐条件下固化的复合材料性能相当。  相似文献   

15.
乙烯燃烧简化化学动力学模型及其验证   总被引:1,自引:0,他引:1  
采用“准稳态”方法,从乙烯燃烧的详细化学反应动力学模型出发,建立了包含20个组分和16步总包反应的简化化学动力学模型。为检验动力学模型的有效性,在我国同步辐射实验室燃烧站上开展了乙烯/O2/Ar的层流预混火焰组分测量。应用一维数值方法对实验结果进行了模拟,计算的组分分布和实验测量数据进行了对比。结果表明:简化反应动力学模型能有效地再现详细基元反应模型的反应机理,具有较高精度;但采用乙烯详细化学动力学模型计算结果与实验测量还存在一定的差异,需要进一步改进。  相似文献   

16.
氧化铝陶瓷凝胶注模成型凝固动力学研究   总被引:1,自引:0,他引:1  
凝胶注模成型(Gelcasting)是一种近净尺寸陶瓷成型工艺,它是通过高分子聚合物自由基聚合反应来实现陶瓷料浆的原位固化的。通过建立料浆温度与凝固时间的曲线,来研究陶瓷料浆的凝固动力学,是简便可行的研究方法,结果表明:"驰豫时间"可以成功地描述陶瓷料浆的凝固过程。在Al2O3陶瓷料浆Gelcasting成型工艺条件优化的基础上,制备出了气孔分布均匀的Al2O3坯体。  相似文献   

17.
用灵敏度法简化化学反应动力模型   总被引:3,自引:0,他引:3  
介绍了用于简化化学反应动力模型的灵敏度方法的基本思想与具体方法,然后用该方法来对两个化学反应实例:甲醛氧化反应和一氧化碳/氢气在空气中燃烧的化学反应进行简化,均得到了比较好的结果。  相似文献   

18.
研究了以二芳基碘鎓盐为引发剂的电子束固化阳离子环氧树脂的固化反应动力学特征.研究表明:在反应初期,反应速率为质子酸数量所控制,反应速率随时间增加和环氧值的降低而加大;随反应的进行,反应速率的变化逐渐转化为环氧值所控制,反应速率达到一个极值点之后逐渐降低;当引发剂完全分解之后,反应速率只受环氧值所控制,呈一级反应动力学特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号