首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
连续纤维增韧陶瓷基复合材料制备过程中因纤维与基体线胀系数失配会产生热残余应力,从而导致纤维脱粘、基体开裂等现象,严重影响复合材料力学性能。本文针对CVI工艺制备的单向C/SiC复合材料,建立"纤维-界面-基体"单胞物理模型,基于细观力学分析方法对热残余应力分布规律进行预测,采用ABAQUS对材料制备过程进行数值模拟,揭示了界面厚度、纤维体积分数、制备温度等参数对纤维、基体热残余应力分布的影响规律,分析了热残余应力对复合材料力学性能的影响。研究结果能够为C/SiC复合材料的设计、分析及微纳力学性能试验提供理论支持。  相似文献   

2.
C/C复合材料的宏观强度是由纤维束强度起主导作用,而纤维束强度受纤维/基体界面剪切强度影响.本文建立了界面剪切强度影响下的纤维束强度计算模型,用以计算纤维束或碳布强度.针对细编穿刺C/C复合材料利用其周期性结构单胞,纤维柬和碳布采用Tsai-Wu准则,基体采用最大应力准则,纤维束/基体界面采用内聚力单元,并对其采用二次应力准则,将单胞施加周期性边界条件,计算了纤维束/基体界面处于弱界面剪切强度并与纤维/基体界面剪切强度在一定比例协同变化时的材料宏观拉伸强度,分析了材料的破坏模式.通过计算结果表明:材料宏观拉伸强度会随两类界面剪切强度的协同增加而增加.  相似文献   

3.
通过单向拉伸试验,对比研究平纹编织C/SiC陶瓷基复合材料在室温和高温(1300℃,包括惰性气氛和湿氧气氛)环境下的宏观力学特性,并采用光学显微镜和扫描电镜对试件断口进行显微观察,分析其损伤模式和破坏机理。结果表明:C/SiC复合材料的室温和高温拉伸行为通常表现为非线性特征,在低应力时就开始出现损伤;纤维与基体之间界面滑行阻力的降低使C/SiC复合材料在高温惰性气氛环境下的拉伸强度和破坏应变均比室温下的高;碳纤维的氧化严重影响材料的承载能力导致高温湿氧环境下的拉伸强度和破坏应变均比室温下的低;C/SiC复合材料室温和高温下的拉伸均呈现韧性断裂,断口较为相似,只是纤维拔出长度和断口的平齐程度有所不同,其中高温惰性气氛环境下纤维拔出最长,高温湿氧环境下试件断口有明显的被氧化痕迹;0°纤维束表面基体开裂、明显的层间分层以及0°纤维和纤维束的拔出和断裂同时携带90°纤维束拔出是C/SiC复合材料在室温和高温下的拉伸破坏机理。  相似文献   

4.
2D-C/SiC复合材料的拉伸损伤研究   总被引:1,自引:0,他引:1  
通过单调拉伸和循环加卸载试验,研究了2D-C/SiC复合材料的力学性能及损伤演化过程。结果表明,残余应变、卸载模量和应力的关系曲线与拉伸应力应变曲线具有类似的形状。基于细观力学建立了材料的损伤本构关系和强度模型,分析计算表明,残余应变主要由裂纹张开位移和裂纹间距决定,而卸载模量主要由界面脱粘率决定;材料的单轴拉伸行为主要由纵向纤维束决定,横向纤维束对材料的整体模量和强度贡献较小。理论模拟结果与试验值吻合较好。  相似文献   

5.
为了探究C纤维和SiC纤维对SiC陶瓷基复合材料力学性能的影响,采用化学气相浸渗法(CVI)制备了纤维束复合材料Mini-C/SiC和Mini-SiC/SiC,测试了C纤维束、SiC纤维束、Mini-C/SiC和Mini-SiC/SiC复合材料的拉伸强度,利用两参数Weibull分布模型研究了强度分布,并观察了复合材料的断口形貌。结果表明:两参数Weibull分布可有效合理地表征强度分布,并准确地进行强度预测。Mini-C/SiC复合材料的拉伸强度高于Mini-SiC/SiC复合材料,且C纤维束和Mini-C/SiC复合材料拉伸强度的分散性低于SiC纤维束和Mini-SiC/SiC复合材料。C纤维束发生韧性断裂,SiC纤维束发生脆性断裂。当基体裂纹达到饱和状态时,Mini-C/SiC复合材料继续变形直至断裂,而Mini-SiC/SiC复合材料随即发生断裂,Mini-C/SiC复合材料的断口主要以纤维丝和纤维簇的拔出为主,而Mini-SiC/SiC复合材料的断口主要以纤维丝的拔出为主。该实验结果将为SiC陶瓷基复合材料的设计与制备提供参考与借鉴。  相似文献   

6.
通过对2种丝束大小平纹机织的碳纤维布增强SiC(C/SiC)复合材料的力学性能实验,研究了纤维束丝束大小(1k和3k)对复合材料力学性能的影响。实验结果表明:纤维束大小不同,导致纤维束弯曲程度和复合材料孔隙率不同,从而使得C/SiC复合材料力学性能产生差异。  相似文献   

7.
曾涵  景鑫  孙亚松 《推进技术》2023,(9):238-252
为了准确有效地评估陶瓷基复合材料的热力性能,本文基于真实的CT扫描图像,充分考虑不同编织结构的铺层结构与内部孔隙,建立了平纹机织C/SiC复合材料、平纹机织SiC/SiC复合材料以及2.5D编织SiC/SiC复合材料的二维细观模型。在此基础上构建有限元模型,计算材料等效弹性模量与等效导热系数,并与实验结果进行对比,验证了模型的正确性和有效性。并分析微观结构对应力集中区域与热流集中区域分布的影响规律。研究发现:孔隙的几何形状和分布对宏观热力性能影响显著,且三种材料截面中的应力集中区和热流集中区均与纬纱和经纱交织前后的区域有关;SiC纤维增强的材料弹性模量及导热性能均大于C纤维增强的材料,与平纹机织结构相比2.5D编织结构材料在厚度方向的模量和热导率更大。  相似文献   

8.
建立了考虑纤维束内部缺陷以及外部基体缺陷的多尺度单胞模型。首先依据电镜扫描图和材料内部单胞的密度,确定了纤维束单胞和复合材料单胞的几何尺寸;然后引入周期性边界条件,利用含缺陷的纤维束单胞模型计算了其初始模量和强度;最后使用由电镜扫描图确定尺寸的复合材料单胞模型,利用上一尺度的材料参数,对复合材料的模量进行了预测;并建立了含损伤纤维束单胞的刚度矩阵,运用基于不同失效模式下损伤状态变量的刚度渐进折减法表征材料积分点损伤,通过数值结果与试验结果的对比,分析了Hashin准则作为判定纤维束起始损伤的适用性,并最终据此给出了单轴载荷作用下受损材料参数的变化情况。分析表明:基于考虑两种缺陷的多尺度模型,使用Hashin准则对C/Si C复合材料单胞进行非线性应力-应变行为数值预报与实验吻合良好。  相似文献   

9.
提出了蒙特卡罗方法模拟陶瓷基复合材料基体随机开裂过程,采用剪滞模型描述了复合材料出现损伤时细观应力场,并推导得到了考虑基体开裂时复合材料拉伸应力-应变曲线计算公式.开展了室温环境下C/SiC复合材料的单轴拉伸试验,并将理论预测应力-应变曲线与试验结果进行对比.同时,采用该方法对SiC/CAS,SiC/Si3N4复合材料应力-应变曲线进行了模拟,并与国外提供的相关试验数据进行比较,发现两者吻合得较好,从而证实了蒙特卡罗法可有效地模拟考虑基体随机开裂过程的陶瓷基复合材料应力-应变曲线.此外,还分析了Weibull模量、残余热应力和初始开裂应力对应力-应变曲线的影响.研究表明:Weibull模量越大,应力-应变曲线非线性越明显;热残余应力越大,应力-应变曲线偏转越早,非线性越明显;初始开裂应力与Weibull模量对应力-应变曲线影响规律相似.   相似文献   

10.
SiC/SiC复合材料的力学性能   总被引:2,自引:0,他引:2  
采用低压化学气相沉积(LPCVD)法制备了具有热解碳界面层的2.5维SiC/SiC复合材料.研究了残余孔洞及热解碳界面层厚度对材料力学性能的影响.结果表明:材料弯曲强度受纤维束之间大孔的影响很小,主要与纤维间的小孔有关,随小孔尺寸和数量的减小而增大.当气孔率低于27%时,小孔的数量和尺寸均变化不大,材料强度提高有限.90nm厚热解碳界面层的存在使材料由破坏性断裂变为非破坏性断裂,强度由174MPa增加到305MPa.进一步增加界面层厚度,纤维受到损伤,材料的力学性能下降.界面层为180nm和310nm厚时SiC/SiC的强度分别为274MPa和265MPa,纤维拔出数量少,材料近似破坏性断裂.  相似文献   

11.
纤维增强复合材料轴结构铺层方案优化设计   总被引:1,自引:0,他引:1  
基于细观力学有限元法,采用改进的细观力学代表体积元(RVE)模型预测连续纤维增强金属基复合材料力学性能,对比分析相同体积分数下不同排列RVE模型的计算结果.选定连续纤维增强金属基复合材料轴结构为研究对象,建立连续纤维增强金属基复合材料轴结构细、宏观力学模型,开展该轴结构承载能力计算.在此基础上,为实现连续纤维增强金属基复合材料低压涡轮轴铺层方案优化设计,参照某型航空发动机设计要求,以总铺层厚度为目标函数,采用random design法,确定了由细观RVE排列结构至宏观轴结构铺层方案.结果表明:采用正方形对角排列RVE模型计算的力学性能优于四边形排列RVE模型;纤维与基体呈正方形对角排列可提高轴结构承载能力、临界屈曲载荷、临界转速;该方法确定的铺层方案与通用(GE)公司的SiC/Ti低压涡轮轴铺层方案一致.  相似文献   

12.
采用CVD工艺在反应烧结碳化硅(RB-SiC)反射镜坯体上沉积了一层致密的碳化硅薄膜作为反射镜镜面.CVD-SiC和RB-SiC热物理性能上的差异引起的热残余应力和热变形,在很大程度上影响反射镜的质量,本文采用有限单元法计算了沉积过程中反射镜的温度场、应力场和热变形,采用X射线衍射方法测试了薄膜表面的残余应力.分析结果表明,薄膜存在较大的残余应力,包括热应力和本征应力,两者量值相当,热变形很小.  相似文献   

13.
左可军  闻洁 《航空动力学报》2018,33(6):1326-1335
提出了一种能够刻画平纹编织C/SiC复合材料编织结构的三维纤维随机模型,探讨了微观结构影响宏观等效导热系数的机理。采用蒙特卡罗法模拟纤维位置的随机分布,用有限元法计算等效导热系数,通过数理统计方法分析在不同纤维体积分数下等效导热系数的随机分布规律;并且比较了相同纤维体积分数下,纤维随机模型平均等效导热系数与纤维周期排列模型等效导热系数的差别。结果表明:在不同体积分数下,纤维位置随机等效导热系数都呈高斯分布;纤维随机模型中纤维会出现聚集现象,形成局部“导热热障”,所以纤维随机模型平均等效导热系数小于纤维周期排列模型,这种差异在中等纤维体积分数下最明显。   相似文献   

14.
采用APDL语言实现ANSYS的二次开发,建立含预制缺陷的纤维束截面卵圆形多尺度单胞模型。首先计算纤维束单胞的初始模量,强度以及最大应变;随后利用扫描电镜图中的缺陷建立单胞模型,并引入周期性边界条件,预测材料的初始各向材料常数。同时利用Linde提出的逐渐损伤准则,进行单轴拉伸力学行为的数值模拟,并阐述该平纹机织复合材料单胞模型在经向拉伸载荷作用下其纤维束的损伤及演化过程。该模型计算得到的最大拉应度为0.65%,强度为256.46 MPa。结果表明,该模型给出的数值模拟结果与实验数据吻合较好,证明了模型的有效性,为该类材料的优化设计及其力学性能分析提供了一种有效方法。  相似文献   

15.
纤维增强复合材料力学性能预测及试验验证   总被引:1,自引:0,他引:1  
针对纤维均匀排布的单向纤维增强复合材料结构力学性能预测问题,基于复合材料细观力学有限元方法,研究建立了代表体积元(RVE)模型,并施加周期性边界条件,实现了纤维增强复合材料基本力学性能的预测。通过将应用上述RVE模型所获取的B/Al纤维增强复合材料力学性能预测结果与解析解和试验数据进行对比表明,施加周期性边界条件的RVE模型的力学性能预测结果与解析解和试验数据吻合良好,验证了所建立计算模型的有效性。基于单向连续纤维增强SiC/TC4复合材料板材的力学性能测试试验,获取了不同铺层方案结构的纵向/横向弹性模量和泊松比,得到的纵向/横向弹性模量计算值与各自试验值均值的误差均小于5%,表明弹性力学性能参数基本一致,计算模型具有合理性。   相似文献   

16.
董辉跃  柯映林  孙杰  吴群 《航空学报》2004,25(4):429-432
航空整体结构件在加工过程中容易发生较大变形。为了研究毛坯的初始残余应力对整体结构件加工变形的影响,采用准耦合方法,利用有限元软件ABAQUS模拟7075铝合金毛坯的淬火过程,研究该过程中温度的变化和残余应力的分布规律,并在含有淬火残余应力的毛坯上进行材料去除模拟。结果表明,模拟产生的比例件的变形与实际加工的比例件的变形非常近似,从而证明了毛坯的初始残余应力是引起整体结构件加工变形的主要因素,同时验证了准耦合淬火模拟的有效性。  相似文献   

17.
复合材料层板固化全过程残余应变/应力的数值模拟   总被引:1,自引:0,他引:1  
采用商业软件对带有铝板的复合材料层板固化全过程残余应变/应力进行数值模拟计算。在固化过程的模拟中,应用有限元法计算复合材料层板热-化学模型,有限差分法计算固化动力学模型,通过设置较小的时间步实现求解两个模型强耦合的关系。在残余应力数值模拟中,化学收缩引起的应变在每一计算步以初始应变施加在复合材料结构上。基于以上技术,对带有铝合金的复合材料层板固化全过程残余应变/应力演化进行数值模拟,并分析纤维方向和垂直纤维方向复合材料的残余应变/应力演化历程。通过与试验中层板曲率的比较,验证文中模型计算的准确性。  相似文献   

18.
以T300碳纤维/环氧树脂基单向复合材料为例,考虑纤维周围间隙缺陷的影响,建立了基于微观图像识别的等效导热系数预估方法.首先利用图像识别技术处理材料微观电镜照片,然后依据纤维体积分数稳定性判据应用几何重构技术建立了代表性单元,并通过在代表性单元(RVE)内部交界面处添加接触热阻的方法引入间隙缺陷的影响,最终利用有限元方法模拟得到等效导热系数(ETC).研究发现:间隙的位置对等效导热系数影响微弱;随着间隙缺陷占比和厚度的增加,等效导热系数显著降低;间隙缺陷占比大于0.8,无量纲间隙缺陷厚度小于0.15时,单向纤维增韧复合材料的等效导热系数受间隙影响最突出;相对于纤维和基体理想接触的情况,考虑间隙缺陷后,等效导热系数最大降幅可达52.1%.   相似文献   

19.
Ceramic Matrix Composite (CMC) turbine guide vanes possess multi-scale stress and strain with inhomogeneity at the microscopic scale. Given that the macroscopic distribution cannot reflect the microscopic stress fluctuation, the macroscopic method fails to meet the requirements of stress and strain analysis of CMC turbine guide vanes. Furthermore, the complete thermodynamic properties of 2D woven SiC/SiC-CMC cannot be obtained through experimentation. Accordingly, a method to calculate the thermodynamic properties of CMC and analyze multi-scale stress and strain of the turbine guide vanes should be established. In this study, the multi-scale thermodynamic analysis is investigated. The thermodynamic properties of Chemical Vapor Infiltration (CVI) processed SiC/SiC-CMC are predicted by a Representative Volume Element (RVE) model with porosity, leading to the result that the relative error between the calculated in-plane tensile modulus and the experimental value is 4.2%. The macroscopic response of a guide vane under given conditions is predicted. The relative error between the predicted strain on the trailing edge and the experimental value is 9.7%. The calculation of the stress distribution of micro-scale RVE shows that the maximum value of microscopic stress, which is located in the interlayer matrix, is more than 1.5 times that of macroscopic stress in the same direction and the microscopic stress distribution of the interlayer matrix is related to the pore distribution of the composite.  相似文献   

20.
提出了一种采用有限元法计算平纹编织C/SiC复合材料等效导热系数的方法.首先研究了材料的细观结构,根据材料显微照片建立了带基体碳纤维束复合材料的单胞模型,采用基体中孔隙分布随机生成的单胞模型,计算了孔隙率对基体等效导热系数的影响,通过施加3组边界条件计算出带基体碳纤维束和复合材料的等效导热系数.最后应用提出的方法计算分析了碳纤维体积分数和孔隙率对复合材料等效导热系数的影响规律.结果显示:复合材料等效导热系数随碳纤维体积分数增大而线性下降,碳纤维体积分数从54%增加到78%的过程中,复合材料y轴方向的等效导热系数下降了12.8%,x与z轴方向的等效导热系数同时下降了8.6%;复合材料等效导热系数随孔隙率增大呈加速下降趋势,孔隙率从0增加到30%的过程中,材料的x与z轴方向的等效导热系数下降了22.91%,y轴方向的等效导热系数下降了34.66%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号