首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
The four identical Cluster spacecraft, launched in 2000, orbit the Earth in a tetrahedral configuration and on a highly eccentric polar orbit (4–19.6 RE). This allows the crossing of critical layers that develop as a result of the interaction between the solar wind and the Earth’s magnetosphere. Since 2004 the Chinese Double Star TC-1 and TC-2 spacecraft, whose payload comprise also backup models of instruments developed by European scientists for Cluster, provided two additional points of measurement, on a larger scale: the Cluster and Double Star orbits are such that the spacecraft are almost in the same meridian, allowing conjugate studies. The Cluster and Double Star observations during the 2005 and 2006 extreme solar events are presented, showing uncommon plasma parameters values in the near-Earth solar wind and in the magnetosheath. These include solar wind velocities up to ∼900 km s−1 during an ICME shock arrival, accompanied by a sudden increase in the density by a factor of ∼5 and followed by an enrichment in He++ in the secondary front of the ICME. In the magnetosheath ion density values as high as 130 cm−3 were observed, and the plasma flow velocity there reached values even higher than the typical solar wind velocity. These resulted in unusual dayside magnetosphere compression, detection of penetrating high-energy particles in the magnetotail, and ring current development following several successive injections of energetic particles in the inner magnetosphere, which “washed out” the previously formed nose-like ion structures.  相似文献   

2.
Observations of unusually large magnetic fields in the ionosphere indicate periods of maximum stress on Titan’s ionosphere and potentially of the strongest loss rates of ionospheric plasma. During Titan flyby T42, the observed magnetic field attained a maximum value of 37 nT between an altitude of 1200 and 1600 km, about 20 nT stronger than on any other Titan pass and close to five times greater in magnetic pressure. The strong fields occurred near the corotation-flow terminator rather than at the sub-flow point, suggesting that the flow which magnetized the ionosphere was from a direction far from corotation and possibly towards Saturn. Extrapolation of solar wind plasma conditions from Earth to Saturn using the University of Michigan MHD code predicts an enhanced solar wind dynamic pressure at Saturn close to this time. Cassini’s earlier exits from Saturn’s magnetosphere support this prediction because the Cassini Plasma Spectrometer instrument saw a magnetopause crossing three hours before the strong field observation. Thus it appears that Titan’s ionosphere was magnetized when the enhanced solar wind dynamic pressure compressed the Saturnian magnetosphere, and perhaps the magnetosheath magnetic field, against Titan. The solar wind pressure then decreased, leaving a strong fossil field in the ionosphere. When observed, this strong magnetic flux tube had begun to twist, further enhancing its strength.  相似文献   

3.
Spatial distribution of the magnetosheath ion flux   总被引:1,自引:0,他引:1  
The magnetosheath plays a crucial role in solar wind-magnetosphere interaction because it is the magnetosheath magnetic field and plasma that interact with the magnetopause and magnetosphere, not the unshocked solar wind. We are presenting ion flux measurement statistics at both the dawn and dusk flanks of the magnetosheath and their comparison with a gasdynamic magnetosheath model. The study is based on three years of INTERBALL-1 measurements supported by simultaneous WIND solar wind and magnetic field observations. Statistical processing has shown (1) the limitations of the gasdynamic model, (2) the conditions favorable for the creation of a plasma depletion layer adjacent to the flank magnetopause, (3) strong dawn-dusk asymmetry of the ion fluxes, and (4) an evidence for the presence of a slow mode front adjacent to the magnetopause.  相似文献   

4.
Nonlinear isolated electrostatic solitary waves (ESWs) are observed routinely at many of Earth’s major boundaries by the Wideband Data (WBD) plasma wave receivers that are mounted on the four Cluster satellites. The current study discusses two aspects of ESWs: their characteristics in the magnetosheath, and their propagation in the magnetosheath and in the auroral acceleration (upward current) region. The characteristics (amplitude and time duration) of ESWs detected in the magnetosheath are presented for one case in which special mutual impedance tests were conducted allowing for the determination of the density and temperature of the hot and cold electrons. These electron parameters, together with those from the ion experiment, were used as inputs to an electron acoustic soliton model as a consideration for the generation of the observed ESWs. The results from this model showed that negative potential ESWs of a few Debye lengths (10–50 m) could be generated in this plasma. Other models of ESW generation are discussed, including beam instabilities and spontaneous generation out of turbulence. The results of two types of ESW propagation (in situ and remote sensing) studies are also presented. The first involves the propagation of bipolar type ESWs from one Cluster spacecraft to another in the magnetosheath, thus obtaining the velocity and size of the solitary structures. The structures were found to be very flat, with large scale perpendicular to the magnetic field (>40 km) and small scale parallel to the field (<1 km). These results were then discussed in terms of various models which predict such flat structures to be generated. The second type of propagation study uses striated Auroral Kilometric Radiation (SAKR) bursts, observed on multiple Cluster satellites, as tracers of ion solitary waves in the upward current region. The results of all studies discussed here (pulse characteristics and ESW velocity, lifetime, and size) are compared to in situ measurements previously made on one spacecraft and to theoretical predictions for these quantities, where available. The primary conclusion drawn from the propagation studies is that the multiple spacecraft technique allows us to better assess the stability (lifetime) of ESWs, which can be as large as a few seconds, than can be achieved with single satellites.  相似文献   

5.
Foreshock is a special region located upstream of the Earth’s bow shock characterized by the presence of various plasma waves and fluctuations caused by the interaction of the solar wind plasma with particles reflected from the bow shock or escaping from the magnetosphere. On the other hand, foreshock fluctuations may modify the bow shock structure and, being carried through the magnetosheath, influence the magnetopause. During the years 1995–2000, the INTERBALL-1 satellite made over 10,000 hours of plasma and energetic particles measurements in the solar wind upstream of the Earth’s bow shock. We have sorted intervals according to the level of solar wind ion flux fluctuations and/or according to the flux of back-streaming energetic protons. An analysis of connection between a level of ion flux fluctuations and fluxes of high-energy protons and their relation to the IMF orientation is presented.  相似文献   

6.
The shape of the dayside Venus ionopause, and its dependence on solar wind parameters, is examined using Pioneer Venus Orbiter field and particle data. The ionopause is defined here as the altitude of pressure equality between magnetosheath magnetic pressure and ionospheric thermal pressure; its typical altitudes range from ~300 km near the subsolar point to ~900 km near the terminator. A strong correlation between ionopause altitude and magnetosheath magnetic pressure is demonstrated; correlation between magnetic pressure and the normally incident component of solar wind dynamic pressure is also evident. The data support the hypothesis of control of the ionopause altitude by solar wind dynamic pressure, manifested in the sheath as magnetic pressure. The presence of large scale magnetic fields in the ionosphere is observed primarily when dynamic pressure is high and the ionopause is low.  相似文献   

7.
Using Lunar Prospector data, we review the magnetic field and electron signatures of solar wind interaction with lunar crustal magnetic sources. Magnetic field amplifications, too large to represent direct measurements of crustal fields, appear in the solar wind over strong crustal sources, with the chance of observing these amplifications depending on upstream solar wind parameters. We often observe increases in low-energy (?100 eV) electron energy fluxes simultaneously with large magnetic field amplifications, consistent with an increase in plasma density across a shock surface. We also often observe low frequency wave activity in the magnetic field data (both broadband turbulence and monochromatic waves), often associated with electron energization, sometimes up to keV energies. Electron energization appears to be correlated more closely with wave activity than with magnetic amplifications. Detailed studies of the interaction region will be necessary in order to understand the physics of the Moon–solar wind interaction. At present, the Moon represents the only natural laboratory available to us to study solar wind interaction with small-scale crustal magnetic fields, though simulation results and theoretical work can also help us understand the physical processes at work.  相似文献   

8.
During conditions of northward interplanetary magnetic field (IMF), the near-tail plasma sheet is known to become denser and cooler, and is described as the cold-dense plasma sheet (CDPS). While its source is likely the solar wind, the prominent penetration mechanisms are less clear. The two main candidates are solar wind direct capture via double high-latitude reconnection on the dayside and Kelvin–Helmholtz/diffusive processes at the flank magnetopause. This paper presents a case study on the formation of the CDPS utilizing a wide variety of space- and ground-based observations, but primarily from the Double Star and Polar spacecraft on December 5th, 2004. The pertinent observations can be summarized as follows: TC-1 observes quasi-periodic (∼2 min period) cold-dense boundary layer (compared to a hot-tenuous plasma sheet) signatures interspersed with magnetosheath plasma at the dusk flank magnetopause near the dawn-dusk terminator. Analysis of this region suggests the boundary to be Kelvin–Helmholtz unstable and that plasma transport is ongoing across the boundary. At the same time, IMAGE spacecraft and ground based SuperDARN measurements provide evidence of high-latitude reconnection in both hemispheres. The Polar spacecraft, located in the southern hemisphere afternoon sector, sunward of TC-1, observes a persistent boundary layer with no obvious signature of boundary waves. The plasma is of a similar appearance to that observed by TC-1 inside the boundary layer further down the dusk flank, and by TC-2 in the near-Earth magnetotail. We present comparisons of electron phase space distributions between the spacecraft. Although the dayside boundary layer at Polar is most likely formed via double high-altitude reconnection, and is somewhat comparable to the flank boundary layer at Double Star, some differences argue in favour of additional transport that augment solar wind plasma entry into the tail regions.  相似文献   

9.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

10.
In this paper we study the charging process of small grain particles by anisotropic multi-component solar wind plasmas (electrons, protons and heavy ions), versus two-component (electron/proton) plasmas. We are focusing attention on the important characteristics of the charging process, namely the charging time, floating potential and current content as functions of plasma parameters such as He++/H+ (α/p) number density and Tα/Tp temperature ratios of alpha particles to protons, as well as plasma streaming velocity v0. Measured statistical properties of solar wind plasma parameters at 1 AU show considerable variations in α/p-temperature ratios from 1 to 10, in α/p-number density ratio from 0.01 to 0.35, as well as in values of streaming velocity v0 from 200 km/s to 1000 km/s and more. Periods of these variations could last for several days each, leading to significant variability in the charging process, according to newly derived general analytical expressions. Numerical calculations performed for protons/alphas plasmas showed large disparity in the charging characteristics. For example, in anisotropic plasma, grain charging time varies up to 90% depending on α/p-particles temperature and number density ratios, whereas changes in floating potential are up to 40%. In contrast, in isotropic plasma, charging characteristic for grains do not change very much for the same plasma parameters variations, with charging time varying about 12% and floating potential only varying about 4%. It is also shown that in highly anisotropic plasma, with all ballistic electrons and ions, dust grains could not hold their charges, and characteristic discharged time is calculated. We note that the analysis is equally applicable to any sized body immersed in solar wind plasma.  相似文献   

11.
The Wind   spacecraft’s Faraday cups (FC) continue to produce high-quality, in situ observations of thermal protons (i.e., ionized hydrogen) and αα-particles (i.e., fully ionized helium) in the solar wind. By fitting a Wind/FC ion spectrum with a model velocity distribution function (VDF) for each particle species, values for density, bulk velocity, and temperature can be inferred. Incorporating measurements of the background magnetic field from the Wind Magnetic Field Investigation (MFI) allows perpendicular and parallel temperature components to be separated. Prior implementations of this analysis averaged the higher-cadence Wind/MFI measurements to match that of the Wind/FC ion spectra. However, this article summarizes recent and extensive revisions to the analysis software that, among other things, eliminate such averaging and thereby account for variations in the direction of the magnetic field over the time taken to measure the ions. A statistical comparison reveals that the old version consistently underestimates the temperature anisotropy of ion VDF’s: averaging over fluctuations in the magnetic field essentially blurs the perpendicular and parallel temperature components, which makes the plasma seem artificially more isotropic. The new version not only provides a more accurate dataset of ion parameters (which is well suited to the study of microkinetic phenomena), it also demonstrates a novel technique for jointly processing particle and field data. Such methods are crucial to heliophysics as wave-particle interactions are increasingly seen as playing an important role in the dynamics of the solar wind and similar space plasmas.  相似文献   

12.
46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasi-parallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath.  相似文献   

13.
We examined polar rain flux observed by STSAT-1 in the northern polar cap and compared it with solar wind parameters. We found that the differential energy spectrum of polar rain was similar to that of the solar wind for the energy range 100 eV – 1 keV, although we cannot rule out the possibility of a small amount of acceleration. On the other hand, the low-energy component of the solar wind showed no correlation and, naturally, the solar wind density had only a weak correlation with the polar rain flux. Polar rain flux in the northern hemisphere is most significant for the condition of the interplanetary magnetic field components Bz < 0, Bx < 0, and By > 0, and in this case it correlated well with the magnitude of By and Bz. For other interplanetary magnetic field conditions, the correlation was insignificant. The results are consistent with those reported previously.  相似文献   

14.
利用理想磁流体LFM模型的模拟数据,基于非参数统计方法对2004年11月14日03:00UT-07:00UT磁暴恢复相期间磁鞘等离子体平均密度进行建模.分析磁鞘等离子体平均密度与上游太阳风参数、行星际磁场参数及地磁扰动参数的统计关系,建立基于数据降维的经验模型.结果表明,电离层扰动强度因子、太阳风-磁层耦合强度因子和日地空间因果链耦合强度因子是影响磁鞘等离子体平均密度的三个主要方面.磁暴恢复相期间电离层上行离子是磁层环电流和磁尾等离子体的重要离子来源.建模分析过程表明,利用经验模型对空间物理过程开展建模,数据的严重多重共线性通常会导致模型的精度较差.而利用SIR和LPR建立的磁鞘等离子体平均密度随相关参数变化的经验模型可以有效解决该问题,具有较好的预测精度,统计特征显著.   相似文献   

15.
To study the variation of ionospheric electron and ion temperatures with solar activity the data of electron and ion temperatures were recorded with the help of Retarding Potential Analyzer payload aboard Indian SROSS-C2 satellite at an average altitude of ∼500 km. The main focuses of the paper is to see the diurnal, seasonal and latitudinal variations of electron and ion temperatures during periods of minimum to maximum solar activity. The ionospheric temperatures in the topside show strong variations with altitude, latitude, season and solar activity. In present study, the temperature variations with latitude, season and solar activity have been studied at an average altitude ∼500 km. The peak at sunrise has been observed during all seasons, in both electron and ion temperatures. Further, the ionospheric temperatures vary with latitude in day time. The latitudinal variation is more pronounced for low solar activity than for high solar activity.  相似文献   

16.
This paper presents a simulation of anisotropy measurements by the low-energy charged particle (LECP) experiment on Voyager 1 for cases when the particle pitch-angle distribution function in the solar wind plasma reference frame is not isotropic. The model includes both the Compton–Getting anisotropy and perpendicular diffusion anisotropy that possibly exists in the upstream region of the termination shock. The results show that the Voyager 1 data cannot rule out either the model with zero solar wind speed or the one with a finite speed on qualitative basis. The determination of solar wind speed using the Compton–Getting effect is affected by the assumption of the magnetic field direction and perpendicular diffusion anisotropy. Because the pitch-angle distribution anisotropy is so large, a small uncertainty in the magnetic field direction can produce very different solar wind speeds ranging from ∼0 to >400 km/s. In fact, if the magnetic field is chosen to be in the Parker spiral direction, which is consistent with the magnetometer measurement on Voyager 1, the derived solar wind speed is still close to the supersonic value. Only the two lowest-energy channels of the LECP instrument may give a definitive answer to the solar wind speed. However, because these channels contain a very high level of cosmic ray background, an uncertainty of just a few percent in the background can entirely hamper the estimate of solar wind speed.  相似文献   

17.
Characteristics of low latitude boundary layer (LLBL) of the Earth’s magnetosphere are investigated using data of Interball/Tail probe observations. The role of different processes of LLBL formation is discussed. The high level of magnetosheath turbulence is taken into account. It is shown that the turbulent nature of magnetic field and plasma fluctuations in the magnetosheath is one of the main factors determining the structure of LLBL. The results of Interball/Tail probe observations of the event 9 March 1996 are analyzed. The thickness of LLBL is determined for the number of cases. The change of LLBL thickness under the influence of the changes of solar wind parameters is investigated. It is shown that variability of solar wind conditions can be the important factor controlling LLBL thickness. Results of observations are compared with the theory which explains the value of LLBL thickness as the result of plasma transport inside the magnetosphere. It is shown that the theory gives the qualitative explanation of the observed dependence of LLBL thickness on solar wind parameters.  相似文献   

18.
A solar wind parcel evolves as it moves outward, interacting with the solar wind plasma ahead of and behind it and with the interstellar neutrals. This structure varies over a solar cycle as the latitudinal speed profile and current sheet tilt change. We model the evolution of the solar wind with distance, using inner heliosphere data to predict plasma parameters at Voyager. The shocks which pass Voyager 2 often have different structure than expected; changes in the plasma and/or magnetic field do not always occur simultaneously. We use the recent latitudinal alignment of Ulysses and Voyager 2 to determine the solar wind slowdown due to interstellar neutrals at 80 AU and estimate the interstellar neutral density. We use Voyager data to predict the termination shock motion and location as a function of time.  相似文献   

19.
We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001–2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.  相似文献   

20.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号