首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluate two prevailing substorm models with an event of plasma flow reversal from tailward to Earthward detected by Cluster at the downstream distance of ∼19 RE in the magnetotail during a substorm on August 22, 2001. We use the unique capability of Cluster measurements in determining gradients to examine the associated current density, Lorentz force, and current dissipation/dynamo term. In association with plasma flow reversal, it is found that (1) there was no clear quadrupole magnetic perturbation signature, (2) the x-component of the Lorentz force did not change sign, (3) the y-component of the product of the current density and the electric field was occasionally negative indicative of a dynamo effect, and (4) the timing sequence of flow reversal from the Cluster configuration did not match tailward motion of a single plasma flow source. These observations are consistent with the near-Earth initiation model for substorms with multiple current disruption sites moving progressively tailward near the late stage of substorm expansion.  相似文献   

2.
Substorm onset timing is a critical issue in magnetotail dynamics research. Solar wind energy is accumulated in the magnetosphere and the configuration of the magnetosphere evolves toward an unstable state during the growth phase. At some point, the expansion phase begins and the stored energy is released through a variety of processes that return the magnetosphere to a lower energy state. In recovery the various processes die away. Unfortunately, the ground and magnetospheric signatures of onset, i.e. energy release, can be seen both in the growth phase prior to onset and in the expansion phase after onset. Some investigators refer to each of these events as a substorm. Tail observations suggest that most substorms have one event that differentiates the behavior of the tail field and plasma. We refer to this time as the “main substorm onset”. Each substorm associated phenomenon is timed independently and then compared with main substorm onsets. ISEE-2 tail observations are used to examine the tail lobe magnetic conditions associated with substorms because ISEE-2 orbit has a high inclination and frequently observes lobe field. Approximately 70 ∼ 75% of tail lobe Bt and Bz change are associated with the main substorm onset. If the satellite is more than 3 Re above (below) the neutral sheet, 86% (57%) of plasma pressure dropouts are associated with substorms. We interpret our results as evidence that the effect of the growth phase is to drive the magnetosphere towards instability. As it approaches global instability local regions become temporarily unstable but are rapidly quenched. Eventually one of these events develops into the global instability that releases most of the stored energy and returns the magnetosphere to a more stable configuration.  相似文献   

3.
Periodicity in occurrence of magnetic disturbances in polar cap and auroral zone under conditions of steady and powerful solar wind influence on the magnetosphere is analyzed on the example of 9 storm events with distinctly expressed sawtooth substorms (N = 48). Relationships between the polar cap magnetic activity (PC-index), magnetic disturbances in the auroral zone (AL-index) and value of the ring current asymmetry (ASYM index) were examined within the intervals of the PC growth phase and the PC decline phase inherent to each substorm. It is shown that the substorm sudden onsets are always preceded by the PC growth and that the substorm development does not affect the PC growth rate. On achieving the disturbance maximum, the PC and AL indices are simultaneously fall down to the level preceding the substorm, so that the higher the substorm intensity, the larger is the AL and PC drop in the decline phase. The ASYM index increases and decreases in conformity with the PC and AL behavior, the correlation between ASYM and PC being better than between ASYM and AL. Level of the solar wind energy input into the magnetosphere determines periodicity and intensity of disturbances: the higher the coupling function EKL, the higher is substorm intensity and shorter is substorm length. Taking into account the permanently high level of auroral activity and inconsistency of aurora behavior and magnetic onsets during sawtooth substorms, the conclusion is made that auroral ionosphere conductivity is typically high and ensures an extremely high intensity of field-aligned currents in R1 FAC system. The periodicity of sawtooth substorms is determined by recurrent depletions and restorations of R1 currents, which are responsible for coordinated variations of magnetic activity in the polar cap and auroral zone.  相似文献   

4.
场向电流随亚暴位相的变化   总被引:2,自引:2,他引:0  
利用ISEE1和2卫星测量的磁场数据,计算了电离层中的场向电流。依据每个场向电流事件所伴随的亚暴位相,分别计算了一区和二区场向电流强度、密度及电流片厚度在亚暴成长相、膨胀相和恢复相的平均值及中间值。其结果,从成长相到膨胀相,一区和二区场向电流的强度和密度增加,从膨胀相到恢复相,其值减小。平均说来,一区的电流强度约是二区的1.4倍。电流片厚度的变化在上述期间内与电流强度及密度的变化趋势相反。   相似文献   

5.
以2004年9月28日02:53:20 UT的亚暴为例, 通过TC-1在磁尾约12.5 Re 和Geotail卫星在近地磁尾等离子体片约8~9 Re的联合观测, 研究亚暴触发过程中近地磁尾等离子体片中等离子体波动特征. 结果表明, 亚暴触发区是近地磁尾中心等离子体片中较小的一个区域, 在亚暴触发区中低混杂不稳定性在近地磁尾等离子体片中存在, 准垂直传播的低混杂波发生在亚暴触发过程中, 而亚暴触发过程中近地磁尾等离子体片外边界区内的磁场偶极化信号和扰动都非常微弱. 在亚暴触发和亚暴膨胀相过程中出现了多次具有不同特征的磁场偶极化现象.   相似文献   

6.
The occurrence rate of SAR arcs during 1997–2007 has been analyzed based on the photometric observations at the Yakutsk meridian (Maimaga station, corrected geomagnetic coordinates: 57°N, 200°E). SAR arcs appeared in 114 cases (∼500 h) during ∼370 nights of observations (∼3170 h). The occurrence frequency of SAR arcs increases to 27% during the growth phase of solar activity and has a clearly defined maximum at a decline of cycle 23. The SAR arc registration probability corresponds to the variations in geomagnetic activity in this solar cycle. The dates, intervals of UT, and geomagnetic latitudes of SAR arc observations at the Yakutsk meridian are presented.  相似文献   

7.
We examined two consecutive plasma sheet oscillation and dipolarization events observed by Cluster in the magnetotail, which are associated with a pseudo-breakup and a small substorm monitored by the IMAGE spacecraft. Energy input from the solar wind and an associated enhancement of the cross-tail current lead to current sheet thinning and plasma sheet oscillations of 3–5 min periods, while the pseudo-breakups occur during the loading phase within a spatially limited area, accompanied by a localized dipolarization observed by DSP TC1 or GOES 12. That is, the so-called “growth phase” is a preferable condition for both pseudo-breakup and plasma sheet oscillations in the near-Earth magnetotail. One of the plasma sheet oscillation events occurs before the pseudo-breakup, whereas the other takes place after pseudo-breakup. Thus there is no causal relationship between the plasma sheet oscillation events and pseudo-breakup. As for the contribution to the subsequent small substorm, the onset of the small substorm took place where the preceding plasma sheet oscillations can reach the region.  相似文献   

8.
In the present paper dependences of substorm activity on the solar wind velocity and southward component (Bz) of interplanetary magnetic field (IMF) during the main phase of magnetic storms, induced by the CIR and ICME events, is studied. Strong magnetic storms with close values of Dstmin?≈??100?±?10?nT are considered. For the period of 1979–2017 there are selected 26 magnetic storms induced by the CIR and ICME (MC?+?Ejecta) events. It is shown that for the CIR and ICME events the average value of the AE index (AEaver) at the main phase of magnetic storm correlates with the solar wind electric field. The highest correlation coefficient (r?=?0.73) is observed for the magnetic storms induced by the CIR events. It is found that the AEaver for magnetic storms induced by ICME events, unlike CIR events, increases with the growth of average value of the southward IMF Bz module. The analysis of dependence between the AEaver and average value of the solar wind velocity (Vswaver) during the main phase of magnetic storm shows that in the CIR events, unlike ICME, the AEaver correlates on the Vswaver.  相似文献   

9.
利用KRM地磁反演方法, 结合北半球中高纬度地磁台站数据, 研究了2004年12月13日行星际磁场北向期间发生的亚暴事件, 极区电离层电动力学参量(电流矢量、等效电流函数以及电势)的分布特征. 结果表明, 在该亚暴膨胀相起始后, 午夜之前西向电集流急剧增强, 且等效电流体系表现为夜侧双涡, 同时伴随夜侧增强的南向电场. 由于极弱的直接驱动过程, 卸载过程引起的电离层效应得到清楚显示. 卸载过程在膨胀相期间起绝对主导性作用. 同时, 夜侧电导率的增强是电集流区域电流急剧增强的主要原因.   相似文献   

10.
Considering the KuaFu mission, state of the energy release of substorm and storm is simply presented and it’s improvements by KuaFu mission are investigated. The KuaFu mission will provide us an opportunity to improve our understanding of the energy release during the storm and the substorms. The two KuaFu-B satellites flying in 180° phase-lagged formation in a polar orbit will allow synoptic observations of the auroral oval, central plasma sheet, ring current and other regions. It can monitor the polar region 24/7 continuously. The advantage of the KuaFu mission is to provide the data during all phases of storm and substorm time that can be used to study the global energy release during all phases continuously. The data from auroral imager and other in-situ instruments on board KuaFu-B can be used to study the auroral dynamics and Joule heating during a storm and substorm. The data from the neutral atom imager instrument can be used to study the dynamics and the energy release in the ring current region from sudden commencement to complete storm recovery. Furthermore the data from KuaFu-A, which is around L1 point, can be used to study the interplanetary conditions along with the data from the plasma sheet to study the triggering process and energy release during a substorm. So, KuaFu mission with its continuous time monitoring facilities would enable us to make much progress towards solving the underlying problems.  相似文献   

11.
On October 8, 2004, the Cluster and Double Star spacecraft crossed the near-Earth (12–19 RE) magnetotail neutral sheet during the recovery phase of a small, isolated substorm. Although they were separated in distance by ∼7 RE and in time by ∼30 min, both Cluster and Double Star observed steady, but highly structured Earthward moving >1000 km/s high speed H+ beams in the PSBL. This paper utilizes a global magnetohydrodynamic (MHD) simulation driven by Wind spacecraft solar wind input to model the large-scale structure of the PSBL and large-scale kinetic (LSK) particle tracing calculations to investigate the similarities and differences in the properties of the observed beams. This study finds that the large-scale shape of the PSBL is determined by the MHD configuration. On smaller scales, the LSK calculations, in good qualitative agreement with both Cluster and Double Star observations, demonstrated that the PSBL is highly structured in both time and space, on time intervals of less than 2 min, and spatial distances of the order of 0.2–0.5 RE. This picture of the PSBL is different from the ordered and structured region previously reported in observations.  相似文献   

12.
本文指出现有亚暴的中性线模型其源区在赤疲乏面上离地球太远;以GEOS-2的观测资料为依据,提出了亚暴膨胀相的一个近地触发模型-气球模不稳定性模型,该模型认为,在增长相期间到达R≈(6-10)RE的近地等离子体片内边缘区,出现指向地球方向的离子压强梯度,越尾电流强度增大,磁力线向磁尾拉伸。当等离子体片变薄,电子沉降增强,极光带电离层电导率骤增时,气球模不稳定性在近地等离子体片内边缘区被激发,场向电流  相似文献   

13.
Solar wind driving can cause a variety of different responses in the magnetosphere. Strong and steady driving during geomagnetic storms may result in sawtooth events. Strong to moderate driving may be followed by either sawtooth events or steady magnetospheric convection (SMC) events. Lower solar wind energy input typically leads to the formation of isolated non-storm substorms. This study uses superposed epoch analysis to reveal the typical properties of these three event groups as well as their similarities and differences. We use IMF and solar wind parameters, as well as ground-based indices (AL, SYM-H, ASY-H, PCN) to examine the level of solar wind driving and its response in the magnetosphere. Our results show that sawtooth events are associated with the strongest ionospheric activity. The subgroups of events during constant solar wind EYEY show that the key difference between the events is the average solar wind speed. Particularly, the high activity during sawtooth events is driven by high solar wind speed, while the lowest average speed during the SMCs may explain the lack of substorm activity during the steady convection periods.  相似文献   

14.
利用2004年地磁西向电急流 AL指数, 亚暴电急流AE指数和场向电流AF指数来确定亚暴起始, 并与2004年亚暴极光起始进行对比. 研究发现, 如果以极光亚暴起始为时间零点, 亚暴的西向电急流AL起始和电急流AE起始主要分布于-5~+6 min的时间范围内, 但在-9~+9 min的时间范围内也有个别事例. 场向电流 AF 起始分布较宽, 可以分布于-8~+7 min的时间范围内. 平均西向电急流AL起始, 电急流AE起始和场向电流AF起始分别为0.5, 0.5, -0.1min. 通常西向电急流AL起始与极光起始同时的概率最高, 而多数情况下电急流AE起始和场向电流AF起始提前极光起始1min. 这些地面磁场指数确定的亚暴起始分布, 随着亚暴强度的增大(即最小AL指数减少, 最大AE指数增大, 最大AF指数增大)而向极光亚暴起始靠近. 对于5个超级亚暴来说, 其西向电急流AL起始和电急流AE起始都发生在极光起始之前. 这些结果说明对于大亚暴, 电急流的增加要早于极光爆发.   相似文献   

15.
This paper, using the data of three Cluster satellites, compares the observations of Bursty Bulk Flow (BBF) by single satellite with those by multi satellites. The results indicate that there exists remarkable difference between observations of BBF by single satellite and multi satellites. The observations of BBF by a single satellite depend on its position relative to the flow channel. The difference is caused by the localization characteristics of fast flows in the plasma sheet, and can lead to diverging views about substorm and causal relations among substorm phenomena.   相似文献   

16.
Starting with our elliptical cross-section model for the study of the magnetic topology of magnetic clouds (MCs) in the interplanetary medium, we develop an analytical approach to the behavior of the Dst index at the recovery phase of a geomagnetic storm.Assuming an axially symmetric ring current, we estimate its physical parameters during that recovery phase of the storm-time. We compare the theoretical and measured Dst indexes in two intense geomagnetic storms (Dst <–100 nT), both associated with MCs.  相似文献   

17.
We compute global magnetospheric parameters based upon solar wind data obtained from the WIND spacecraft upstream. Using the paraboloid magnetospheric model, calculations of the dynamic global magnetospheric current systems have been made. The solar wind dynamic pressure, the interplanetary magnetic field, the strength of the tail current, and the ring current control the polar cap and auroral oval size and location during the magnetic storm. The model calculations demonstrate that the polar cap and the auroral oval areas are mainly controlled by the tail current. The substorm onset at 0630 UT on September 25, 1998 happened near the minimum in the main phase field depression. The substorm expansion onset time is also marked by a sudden enhancement in the solar wind dynamic pressure and an enhancement in the tail current. The magnetic signatures of these two effects cancel each other, which explains why the Dst profile shows no strong time variation during the substorm. Evidence for the substorm expansion includes not only the signature in the AL index but also the strong asymmetry of the low latitude magnetic disturbances (substorm positive bay signature). Model calculations were checked by comparison with the GOES 8 and 10 magnetic field measurements.  相似文献   

18.
Substorm evolution of the near-Earth (|X|<15 RE) plasma sheet has been emphasized recently because the inner tail is thought to link closely to the substorm auroral activity in the ionosphere during the early stage of substorms. In this paper, we discuss how the inner tail substorm phenomena during the late substorm growth phase and early expansion phase are accounted for by the two prevailing substorm models, namely, the near-Earth neutral line model and the current disruption model. We find that the late growth phase features are more satisfactorily accounted for by the current disruption model than by the near-Earth neutral line model. In addition, detailed observations on current disruption show evidence inconsistent with the proposed idea of dipolarization being due to plasma flow braking from reconnection in the mid-tail region, which poses a difficulty to the near-Earth neutral line model as well.  相似文献   

19.
The association of quiet-time Pi2 pulsations with the variations of the interplanetary magnetic field (IMF) has been examined by using three reported events, occurring during extremely quiet intervals, of which the first was on 10 March 1997, the second 27 December 1997, and the third 11 May 1999. For the first event, the onset time of ground Pi2s maps to the IMF structure bearing a variation cycle of north-to-south and north again as seen by Wind in the upstream region and Geotail in the magnetosheath. Likewise, the second and the third events have respectively, four and three recurrent turnings propagating to the Earth sensed by multiple satellites. The comparison of geomagnetic perturbations, auroral brightenings, and energetic particle data in the magnetotail with the IMF observations shows successive substorm-like activations accompanied by ground Pi2 onsets. For a clear variation cycle, the first Pi2 burst appears 36 ± 8 min after southward turning of the IMF and the second one follows14 ± 4 min after a northward turning. Moreover, ground Pi2 onsets recur under low IMF clock angle conditions. These observational results can be interpreted with the prevailing models of externally triggered substorm. But the solar wind coupling to the magnetosphere under quiet conditions proceeds in a less efficient way than under substorm time conditions. Consequently, we suggest that recurrent quiet-time Pi2s can be associated with IMF variations and their cause can be the same as those for substorm times.  相似文献   

20.
The magnetic flux of tail lobes Ψ is divided in two parts of comparable values Ψ1 and Ψ02, with the first that appears during substorm and the second, observed before substorm start. The first was named “new magnetic flux”, the second – “old magnetic flux”. The first, Ψ1, is known to play a definitive role in the energy transport from the solar wind into the magnetosphere-ionosphere-atmosphere system, but the role of Ψ02 in this transport is not well known. From the 27 August 2001 substorm data we study the involvement in the above transport process of the old flux Ψ02. This involvement is observed in the polar cap (PC) area, which existed prior to the substorm and is called respectively “the old PC”. In this study, as distinct from earlier works, we use the balance equation of the energy stored in magnetosphere and energy consumed. Activation of the old PC magnetic flux Ψ02 was found to increase the energy input by ∼85% in the event under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号