首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Substorm onset timing is a critical issue in magnetotail dynamics research. Solar wind energy is accumulated in the magnetosphere and the configuration of the magnetosphere evolves toward an unstable state during the growth phase. At some point, the expansion phase begins and the stored energy is released through a variety of processes that return the magnetosphere to a lower energy state. In recovery the various processes die away. Unfortunately, the ground and magnetospheric signatures of onset, i.e. energy release, can be seen both in the growth phase prior to onset and in the expansion phase after onset. Some investigators refer to each of these events as a substorm. Tail observations suggest that most substorms have one event that differentiates the behavior of the tail field and plasma. We refer to this time as the “main substorm onset”. Each substorm associated phenomenon is timed independently and then compared with main substorm onsets. ISEE-2 tail observations are used to examine the tail lobe magnetic conditions associated with substorms because ISEE-2 orbit has a high inclination and frequently observes lobe field. Approximately 70 ∼ 75% of tail lobe Bt and Bz change are associated with the main substorm onset. If the satellite is more than 3 Re above (below) the neutral sheet, 86% (57%) of plasma pressure dropouts are associated with substorms. We interpret our results as evidence that the effect of the growth phase is to drive the magnetosphere towards instability. As it approaches global instability local regions become temporarily unstable but are rapidly quenched. Eventually one of these events develops into the global instability that releases most of the stored energy and returns the magnetosphere to a more stable configuration.  相似文献   

2.
磁层亚暴是太阳风–磁层–电离层耦合过程中的重要爆发性事件,其特性受太阳风参数的影响很大。本文利用对IMAGE卫星在2000 - 2005年观测到的4193个亚暴起始事件,统计研究了在不同的行星际磁场(IMF)Bz 条件下亚暴起始位置和膨胀相持续时间。结果表明,南向IMF发生的亚暴比北向IMF下发生的亚暴要多。南向IMF条件下亚暴AE指数最大值的平均值基本上>600 nT,并有随南向IMF持续时间增大而增大的趋势。北向IMF条件下亚暴AE指数最大值的平均值基本上<500 nT,并有随北向IMF持续时间增大而减小的趋势。亚暴的起始磁纬度基本上位于65° - 70°之间。当南向IMF或北向IMF的持续时间增大,超过80 min时,北半球的亚暴起始磁纬度会降低。亚暴起始磁地方时大部分位于22:15 - 23:15 MLT之间。但整体分布比较分散,显示不出特别清晰的随IMF Bz持续时间变化的趋势。相比于南向的IMF,北向IMF期间发生亚暴的平均膨胀相持续时间增大了将近10 min,表明南向IMF期间,亚暴强度虽然较大,但其膨胀相持续时间较短,亚暴能量释放和耗散的速度更快。   相似文献   

3.
We have developed a real-time global MHD (magnetohydrodynamics) simulation of the solar wind interaction with the earth’s magnetosphere. By adopting the real-time solar wind parameters and interplanetary magnetic field (IMF) observed routinely by the ACE (Advanced Composition Explorer) spacecraft, responses of the magnetosphere are calculated with MHD code. The simulation is carried out routinely on the super computer system at National Institute of Information and Communications Technology (NICT), Japan. The visualized images of the magnetic field lines around the earth, pressure distribution on the meridian plane, and the conductivity of the polar ionosphere, can be referred to on the web site (http://www2.nict.go.jp/y/y223/simulation/realtime/).The results show that various magnetospheric activities are almost reproduced qualitatively. They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere. From the viewpoint of space weather, the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere. To evaluate the simulation results, we compare the AE indices derived from the simulation and observations. The simulation and observation agree well for quiet days and isolated substorm cases in general.  相似文献   

4.
利用KRM地磁反演方法, 结合北半球中高纬度地磁台站数据, 研究了2004年12月13日行星际磁场北向期间发生的亚暴事件, 极区电离层电动力学参量(电流矢量、等效电流函数以及电势)的分布特征. 结果表明, 在该亚暴膨胀相起始后, 午夜之前西向电集流急剧增强, 且等效电流体系表现为夜侧双涡, 同时伴随夜侧增强的南向电场. 由于极弱的直接驱动过程, 卸载过程引起的电离层效应得到清楚显示. 卸载过程在膨胀相期间起绝对主导性作用. 同时, 夜侧电导率的增强是电集流区域电流急剧增强的主要原因.   相似文献   

5.
This paper reports the spatial and temporal development of bursty bulk flows (BBFs) created by reconnection as well as current disruptions (CDs) in the near-Earth tail using our 3-D global electromagnetic (EM) particle simulation with a southward turning interplanetary magnetic field (IMF) in the context of the substorm onset. Recently, observations show that BBFs are often accompanied by current disruptions for triggering substorms. We have examined the dynamics of BBFs and CDs in order to understand the timing and triggering mechanism of substorms. As the solar wind with the southward IMF advances over the Earth, the near-Earth tail thins and the sheet current intensifies. Before the peak of the current density becomes maximum, reconnection takes place, which ejects particles from the reconnection region. Because of earthward flows the peak of the current density moves toward Earth. The characteristics of the earthward flows depend on the ions and electrons. Electrons flow back into the inflow region (the center of reconnection region), which provides current closure. Therefore the structure of electron flows near the reconnection region is rather complicated. In contrast, the ion earthward flows are generated far from the reconnection region. These earthward flows pile up near the Earth. The ions mainly drift toward the duskside. The electrons are diverted toward the dawnside. Due to the pile-up, dawnward current is generated near Earth. This dawnward current dissipates rapidly with the sheet current because of the opposite current direction, which coincides with the dipolarization in the near-Earth tail. At this time the wedge current may be created in our simulation model. This simulation study shows the sequence of the substorm dynamics in the near-Earth tail, which is similar to the features obtained by multisatellite observations. Identification of the timing and mechanism of triggering substorm onset requires further studies in conjunction with observations.  相似文献   

6.
三维试验粒子轨道法在磁层粒子全球输运中的应用   总被引:1,自引:1,他引:0  
根据磁层粒子动力学理论, 通过偶极磁场模型验证利用三维试验粒子轨道方法模拟近地球区(r < 8Re)带电粒子运动特征的可靠性. 在此基础上, 以太阳风和磁层相互作用的全球MHD模拟结果为背景, 利用三维试验粒子轨道方法, 对非磁暴期间南向行星际磁场背景下太阳风离子注入磁层的情形进行数值模拟, 并对北向行星际磁场背景下太阳风离子注入极尖区以及内磁层的几种不同情形进行了单粒子模拟. 模拟结果反映了南向和北向行星际磁场离子向磁层的几种典型输入过程, 揭示出行星际磁场南向时太阳风粒子在磁层内密度分布的晨昏不对称性以及其在磁鞘和磁层内的大致分布, 并得出统计规律. 模拟结果与理论预测和观测结论相一致, 且通过数值模拟发现, 行星际磁场北向时靠近极尖区附近形成的非典型磁镜结构对于能量粒子经由极尖区注入环电流区域过程有重要的影响和作用.   相似文献   

7.
The Earth’s magnetosphere response to interplanetary medium conditions on January 21–22, 2005 and on December 14–15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14–15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.  相似文献   

8.
Periodicity in occurrence of magnetic disturbances in polar cap and auroral zone under conditions of steady and powerful solar wind influence on the magnetosphere is analyzed on the example of 9 storm events with distinctly expressed sawtooth substorms (N = 48). Relationships between the polar cap magnetic activity (PC-index), magnetic disturbances in the auroral zone (AL-index) and value of the ring current asymmetry (ASYM index) were examined within the intervals of the PC growth phase and the PC decline phase inherent to each substorm. It is shown that the substorm sudden onsets are always preceded by the PC growth and that the substorm development does not affect the PC growth rate. On achieving the disturbance maximum, the PC and AL indices are simultaneously fall down to the level preceding the substorm, so that the higher the substorm intensity, the larger is the AL and PC drop in the decline phase. The ASYM index increases and decreases in conformity with the PC and AL behavior, the correlation between ASYM and PC being better than between ASYM and AL. Level of the solar wind energy input into the magnetosphere determines periodicity and intensity of disturbances: the higher the coupling function EKL, the higher is substorm intensity and shorter is substorm length. Taking into account the permanently high level of auroral activity and inconsistency of aurora behavior and magnetic onsets during sawtooth substorms, the conclusion is made that auroral ionosphere conductivity is typically high and ensures an extremely high intensity of field-aligned currents in R1 FAC system. The periodicity of sawtooth substorms is determined by recurrent depletions and restorations of R1 currents, which are responsible for coordinated variations of magnetic activity in the polar cap and auroral zone.  相似文献   

9.
The relationships between the magnetic disturbance onsets, aurora dynamics and particles injections at the geostationary orbit have been analyzed in detail for 25 sawtooth substorms. It is shown that inconsistency between the above signatures of the substorms onset is typical of the powerful sawtooth substorms, unlike the isolated (“classical”) magnetospheric substorms. The distinguishing feature of the aurora in case of saw-tooth substorms is permanently high level of auroral activity irrespective of the magnetic disturbance onsets and the double oval structure of the aurora display. The close relationship between the aurora behavior and the particle injections at geostationary orbit is also broken. The conclusion is made, that the classical concept of the substorm development, put forward by Akasofu (1964) for isolated substorms, is not workable in cases of the sawtooth disturbances, when the powerful solar wind energy pumping into the magnetosphere provides a permanent powerful aurora particle precipitation into the auroral zone.  相似文献   

10.
行星际激波对地球磁层的压缩效应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2004 年11月9日WIND飞船探测到一个典型的行星际激波. 激波前行星际磁场为持续约50 min的弱南向磁场, 越过激波面, 磁场发生北向偏转且太阳风动压脉冲增强. 在此强动压脉冲增强结构作用下, 磁层被压缩至一个很小的区域. 激波作用于磁层时引起地球同步轨道 各区域高能粒子通量的响应, 但是不同磁地方时的高能粒子通量的响应不同, 表现出双模式扰动, 即在晨昏两侧各能段的电子和质子通量显著增强, 在子夜侧发生类似于亚暴的无色散粒子注入现象. 扰动从向阳面传输到背阳面, 向阳面粒子通量最先增强, 随后背阳面靠近晨昏两侧, 粒子通量开始增强, 最后子夜侧粒子通量表现出无色散高能粒子注入的特点. 另外, 在靠近正午侧, 质子通量先于电子通量发生响应, 在子夜侧电子通量则先于质子通量发生响应. 利用位于向阳面正午两侧的GOES-10 和 GOES-12卫星观测数据发现, 激波作用于磁层时靠近晨侧的磁场变化表现出简单压缩效应, 而靠近昏侧的磁场变化则显然不同, Bx分量减弱, Bz分量几乎减为零, 而By分量则显著增强. 此外, 位于近地磁尾低纬尾瓣区的TC-1卫星观测到激波触发的尾瓣SI现象.   相似文献   

11.
We investigate the properties of interplanetary inhomogeneities generating long-lasting mid-latitude Pc1, 2 geomagnetic pulsations. The data from the Wind and IMP 8 spacecrafts, and from the Mondy and Borok midlatitude magnetic observatories are used in this study. The pulsations under investigation develop in the maximum and early recovery phase of magnetic storms. The pulsations have amplitudes from a few tens to several hundred pT andlast more than seven hours. A close association of the increase (decrease) in solar wind dynamic pressure (Psw) with the onset or enhancement (attenuation or decay) of these pulsations has been established. Contrary to high-latitude phenomena, there is a distinctive feature of the interplanetary inhomogeneities that are responsible for generation of long-lasting mid-latitude Pc1, 2. It is essential that the effect of the quasi-stationary negative Bz-component of the interplanetary magnetic field on the magnetosphere extends over 4 hours. Only then are the Psw pulses able to excite the above-mentioned type of mid-latitude geomagnetic pulsations. Model calculations show that in the cases under study the plasmapause can form in the vicinity of the magnetic observatory. This implies that the existence of an intense ring current resulting from the enhanced magnetospheric convection is necessary for the Pc1, 2 excitation. Further, the existence of the plasmapause above the observation point (as a waveguide) is necessary for long-lasting Pc1 waves to arrive at the ground.   相似文献   

12.
本文指出现有亚暴的中性线模型其源区在赤疲乏面上离地球太远;以GEOS-2的观测资料为依据,提出了亚暴膨胀相的一个近地触发模型-气球模不稳定性模型,该模型认为,在增长相期间到达R≈(6-10)RE的近地等离子体片内边缘区,出现指向地球方向的离子压强梯度,越尾电流强度增大,磁力线向磁尾拉伸。当等离子体片变薄,电子沉降增强,极光带电离层电导率骤增时,气球模不稳定性在近地等离子体片内边缘区被激发,场向电流  相似文献   

13.
The magnetic flux of tail lobes Ψ is divided in two parts of comparable values Ψ1 and Ψ02, with the first that appears during substorm and the second, observed before substorm start. The first was named “new magnetic flux”, the second – “old magnetic flux”. The first, Ψ1, is known to play a definitive role in the energy transport from the solar wind into the magnetosphere-ionosphere-atmosphere system, but the role of Ψ02 in this transport is not well known. From the 27 August 2001 substorm data we study the involvement in the above transport process of the old flux Ψ02. This involvement is observed in the polar cap (PC) area, which existed prior to the substorm and is called respectively “the old PC”. In this study, as distinct from earlier works, we use the balance equation of the energy stored in magnetosphere and energy consumed. Activation of the old PC magnetic flux Ψ02 was found to increase the energy input by ∼85% in the event under consideration.  相似文献   

14.
Two types of convection were observed in the laboratory model of the magnetosphere: viscous convection and convection due to field lines common to both the magnetosphere and artificial solar wind. With a southward field component in the solar wind, convection from the Sun is observed in the polar cap, while with a large northward component, convection is directed toward the Sun. Merging of the field lines occurs in the cleft. With the southward component, a visor appears in front of the magnetosphere boundary. The decay of the visor into small magnetic structure is observed. The formation of an induced magnetosphere with a magnetic tail is shown in the experiments of the simulated conditions near non-magnetic bodies with a plasma shell (Venus, comets). A combined induced-intrinsic magnetosphere also was investigated.  相似文献   

15.
This paper gives a brief outline of the progression from the first substorm model developed in Ref.[4] and[8] based on Kennel's ideas[3], to the present views about the mechanism by which solar wind kinetic energy is converted to electromagnetic energy at the Bow Shock and by which this energy is transferred to the magnetosphere in the form of current; about the transformation of the energy of this current to gas kinetic energy of convecting plasma tubes, and, finally, the back transformation of gas kinetic energy to electromagnetic energy in secondary magnetospheric MHD generators. The questions of the formation of the magnetospheric convection system, the nature of substorm break-up, and of the matching of currents in the magnetosphere-ionosphere system are discussed.   相似文献   

16.
It is clear that the primary energy source for magnetospheric processes is the solar wind, but the process of energy transfer from the solar wind into the magnetosphere, or rather, to convecting magnetospheric plasma, appears to be rather complicated. Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy during its passage through the bow shock front. The transition layer (magnetosheath) can use part of this energy for accelerating of plasma, but can conversely spend part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer (sink) and generator (source) of electric power depending upon special conditions. The direction of the current behind the bow shock front depends on the sign of the IMF Bz-component. It is this electric current which sets convection of plasma in motion.  相似文献   

17.
We present a comparison of large and sharp solar wind dynamic pressure changes, observed by several spacecraft, with fast disturbances in the magnetospheric magnetic field measured by the GOES-8, 9 and 10 geosynchronous satellites. Almost 400 solar wind pressure changes in the period 1996–2003 were selected for this study. Using the large statistics we confirmed that increases (decreases) in the dynamic pressure always results in increases (decreases) in the magnitude of geosynchronous Bz component. The amplitude of the geosynchronous Bz response strongly depends on the location of observer relative to the noon meridian, from the value of solar wind pressure before the disturbance arriving and firstly – from the amplitude of the pressure change.  相似文献   

18.
利用WIND卫星的太阳风观测数据和地磁活动指数, 研究了太阳风扰动对环电流SYM-H指数, 西向极光电急流AL指数和东向极光电急流AU指数的影响. 结果表明, 太阳风动压增长和减少能够同步或延迟引起地磁活动指数的强烈扰动, 其包括环电流指数的上升, 西向极光电急流指数的下降和东向极光电急流指数的上升. 太阳风动压的突然剧烈增加还能够触发超级亚暴和大磁暴. 太阳风动压脉冲引起的地磁效应具有复杂的表现形式, 这说明太阳风动压脉冲的地磁效应不仅与太阳风动压脉冲大小和持续时间有关, 还与磁层本身所处的状态有关. 时间尺度较长, 消耗能量较大的磁暴只有大的持续时间较长的太阳风动压脉冲才能激发.   相似文献   

19.
In the past two years, much progress is made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS, RBSP, Swarm missions etc., or by computer simulations. This paper briefly reviews these works based on papers selected from the 191 publications from January 2014 to December 2015. The subjects cover various sub-branches of magnetospheric physics, including geomagnetic storm, magnetospheric substorm, magnetic reconnection, solar windmagnetosphere-ionosphere interaction, radiation belt, outer magnetosphere, magnetotail, plasmasphere, geomagnetic field, auroras and currents.   相似文献   

20.
The shape of the dayside Venus ionopause, and its dependence on solar wind parameters, is examined using Pioneer Venus Orbiter field and particle data. The ionopause is defined here as the altitude of pressure equality between magnetosheath magnetic pressure and ionospheric thermal pressure; its typical altitudes range from ~300 km near the subsolar point to ~900 km near the terminator. A strong correlation between ionopause altitude and magnetosheath magnetic pressure is demonstrated; correlation between magnetic pressure and the normally incident component of solar wind dynamic pressure is also evident. The data support the hypothesis of control of the ionopause altitude by solar wind dynamic pressure, manifested in the sheath as magnetic pressure. The presence of large scale magnetic fields in the ionosphere is observed primarily when dynamic pressure is high and the ionopause is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号