首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
对飞机复合材料固化工艺中热固化、微波固化、电子束固化、紫外光固化等技术的机理和研究现状进行了分析对比。  相似文献   

2.
研究经预固化后的复合材料层压板的弯曲性能对复合材料结构的设计和修理技术是非常重要的。对于各种固化温度和时间对弯曲性能的影响分析,使得设计师优化这些参数,以得到阶段固化件的最优弯曲性能,对制件的最终性能进行控制。  相似文献   

3.
研究了固化温度对SY H2糊状胶粘剂剪切强度的影响。首先采用差热扫描量热法 (DSC)研究了SY H2糊状胶粘剂固化反应动力学 ,根据Kissinger和Ozawa方法计算出胶粘剂的表观反应活化能分别为 10 2 3kJ/mol和 10 3 9kJ/mol,结合Crane公式求出反应级数为 0 94 3。还根据DSC分析数据研究了升温速率Φ与放热峰值温度Tp 的关系 ,研究表明Tp 与lnΦ呈线性关系。最后讨论了SY H2糊状胶粘剂固化温度对胶接试样剪切强度的影响 ,在固定的固化时间内升高固化温度有助于提高胶接强度 ,最佳固化工艺参数为 130~ 14 0℃固化 2h。  相似文献   

4.
采用丁异戊橡胶作为主体材料,从补强体系、硫化体系和增塑剂三个方面分析了它们对橡胶高低 温性能、耐老化性能和耐压性能的影响。粒径小、结构度高的炭黑和气相白炭黑并用可有效改善橡胶的力学性 能;硫磺含量在0. 8% ~1. 3%使得硫化橡胶既具备较好的高低温性能又兼顾较好的耐老化性能;增塑剂可有 效调整橡胶硬度和耐压性能。并对研制的丁异戊橡胶弹性材料及其柔性接头构件耐高低温性能及耐压性能进 行分析。结果表明,弹性材料高低温剪切性能及耐压性能表征结果能初步反映柔性接头构件的摆动性能及耐 压性能。  相似文献   

5.
运用分段拟合法所得的固化动力学模型描述了一种新型聚三唑树脂的固化行为。研究表明,该树 脂体系在固化前期符合自催化模型,模型为dα dt =3. 78×1016exp(-10200/ T)α0. 653(1-α)2. 015;在固化后期符合n 级固 化模型,模型为dα dt =3. 34×1016exp(-10200/ T)(1-α)0. 927。聚三唑树脂的固化工艺为:RT→80℃→120℃→150℃。  相似文献   

6.
通过试验分析了电子束剂量对环氧树脂体系辐射固化行为的影响,研究结果表明电子束辐射过程中,树脂体系温度上升,并且由表面到内部逐渐降低;随着辐射剂量的提高,辐射体系内部的温度梯度加大,高辐射剂量下的温度变化缓慢;树脂辐射固化层厚度以及在相同厚度下的固化程度均随辐射剂量的增加而增加,但增幅逐渐变小;树脂辐射固化度沿固化层厚度方向加速下降.辐射固化环氧树脂的动态力学分析表明环氧树脂玻璃化温度及高温模量随辐射剂量的增加有所提高,在高辐射剂量下的变化不大,同时交联结构不均匀性增加.  相似文献   

7.
复合材料的力学性能与复合材料的固化过程密不可分。复合材料在固化过程中,由于树脂固化收缩、纤维与基体之间的热膨胀系数不匹配等因素,会产生固化残余应力与固化变形。该固化残余应力会影响复合材料结构的力学性能,甚至会引起分层、基体开裂等严重缺陷。因此,有必要研究固化残余应力对复合材料结构强度的影响。针对某型复合材料机翼,首先利用ABAQUS有限元分析软件进行二次开发,建立了一套基于各向异性黏弹性本构模型的复合材料固化过程分析方法,计算所得固化变形量与试验值误差小于8.24%。其次,采用Hashin强度准则,建立了全复合材料无人机机翼的强度分析有限元模型,机翼失效载荷的预测值相对试验值误差为9.85%。随后,将复合材料固化过程中产生的残余应力作为初始应力条件添加到强度分析模型中,通过有限元方法研究残余应力对全复合材料无人机机翼强度的影响。为研究不同固化参数产生的固化残余应力对结构强度的影响,在合理范围内提出了另外2种固化工艺曲线。模拟结果表明:对于该全复合材料无人机机翼结构而言,固化残余应力导致强度下降,使其强度降低了3.52%,且较优的固化工艺参数下的结构强度比原始固化工艺参数下的结构强度高1...  相似文献   

8.
采用非等温DSC研究了80℃固化环氧树脂体系LTCEP的非等温固化行为。采用GaussianLorentzian加和模型对DSC曲线进行分峰处理,采用Flynn-Wall-Ozawa法确定不同阶段反应的活化能随转化率的变化情况。然后采用Málek方法研究不同阶段反应的非等温固化动力学,得到树脂体系总的反应速率方程并预测树脂体系在不同温度下的固化行为。最后采用拉伸测试表征了LTCEP体系的力学性能。非等温DSC结果表明该树脂体系的DSC曲线可用三个独立的放热峰进行叠加来拟合;三个阶段反应活化能随转化率的变化均不明显,其活化能平均值分别为85.98、84.85和87.16 k J/mol;Sesták-Berggren模型可很好地描述该树脂体系在不同阶段的固化行为。预测LTCEP在150℃下3 min、140℃下5.5 min即可达到90%转化率。拉伸测试结果表明LTCEP经80℃固化后拉伸强度和断裂伸长率分别为(51.34±11.78)MPa和(1.23±0.34)%,125℃后处理对拉伸性能影响不大。  相似文献   

9.
本文通过工艺试验确定了酚醛玻璃钢件固化过热温度,并对常态及过热后的酚醛玻璃钢件的各项机械性能进行了测试比较。  相似文献   

10.
介绍了复合材料整体化结构的概念,提出了复合材料结构件固化变形的具体分析方法,最后运用商业软件ABAQUS对树脂基碳纤维增强复合材料T700/QY8911在整体共固化过程中的变形进行了数值模拟.  相似文献   

11.
本文提出了一种分析模型和计算公式,用于预测L型碳/环氧复合材料构件的固化变形。用直角型材模具制备的试件在室温下呈锐角,当重新加热至固化温度时,构件的角度不能合回复到直角状态。作者认为:复合材料角型材结构的经变形不仅与复合材料的热膨胀行为有关,还与树脂基体固化时的一积收缩效应有关。  相似文献   

12.
本文就J-133等室温固化胶的实验条件、实验结果以及J—133胶的应用情况作一简单介绍。所得结果可作为产品设计和拟定工艺规范使用。  相似文献   

13.
针对共固化成型的复合材料加筋壁板,建立了固化变形模拟计算流程,并开展了T800碳纤维/环氧树脂复合材料工形加筋壁板的固化变形预测,数值预测结果与试验测试结果吻合较好,验证了计算方法的合理性;基于模拟计算,进一步分析了温度工艺参数包括升/降温速率、保温时间等以及结构尺寸参数包括长桁宽度、高度和圆角半径等对加筋壁板固化变形...  相似文献   

14.
一种新型无机耐烧蚀复合材料固化机理的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
在特定温度下,采用一定比例的氢氧化铝和磷酸合成出磷酸铝基体,对玻璃纤维或织物处理后,采用手糊工艺(固化温度低于220℃)制备了新型耐烧蚀复合材料——织物增强磷酸铝基复合材料。借助XRD和TG—DTA等测试技术,详细研究了材料的固化机理,发现材料可采用加热固化和常温固化。其热固化机理为:在加热时,酸式磷酸铝脱水形成聚合状的磷酸铝,然后转变为线型聚磷酸铝或环状偏磷酸铝;常温固化机理为:在常温下,酸式磷酸铝与活性适中的固化剂反应而获得强度。  相似文献   

15.
以轻型高端公务机领世300增压舱共固化成型技术为研究背景,针对增压舱为固化炉整体成型的特点,借助DSC对T700G-12K碳纤维/环氧预浸料的固化温度和固化度进行了研究与分析,优化固化工艺参数.通过无损检测C扫描和力学测试进行验证.试验结果表明:增压舱固化工艺采用凝胶点温度80℃下处理240rin,105℃下保温保压120min以及130℃下保温保压120min为本组试验的最优方案,产品缺陷少.  相似文献   

16.
通过数值模拟方法,利用ABAQUS有限元仿真软件,模拟含R角的复合材料构件的固化过程.根据已有的固化工艺,比较不同工艺条件对复合材料构件固化过程中的温度场和固化度场及变形的影响.结果表明,合理地降低固化工艺温度和固化冷却速率可以减少残余应力的积累,缓解固化变形.  相似文献   

17.
以氧化锌作固化剂,二氧化硅作填料,混合磷酸铬铝制备铬基透波材料基体.通过DSC-TG测试得出该基体的固化温度范围,根据测试结果在不同温度点、不同时间条件下进行固化实验.分析SEM,XRD,IR测试结果得出在180℃/2h条件下该材料体系能完成交联固化反应,并结合电性能测试分析验证了该结论.最后得出该铬基透波材料基体的最佳固化温度和最佳固化时间分别为180℃和2h.  相似文献   

18.
实时监控聚合物基体复合材料层板的固化过程,能够提高复合材料的质量,改善复合材料的性能。通常用几种传感技术,例如微电介质性能测量、荧光、纤维光学和超声波,提供实时信息,以保证固化过程的计算机分析。但每种方法都有一定的局限性。有一种新的力法,涡流接近传感方法,在固化  相似文献   

19.
研制了适合树脂膜熔渗工艺(RFI)的酚醛树脂体系,采用动态DSC技术和固化度的测试,建立了改性树脂体系的固化动力学模型,研究了等温条件下固化度/温度/时间关系以及固化度/玻璃化转变温度关系,通过平板拉丝法研究树脂的凝胶过程,得出凝胶时间和温度之间的关系,回归得到凝胶时的固化度为αgel=53.33%,并以此计算出凝胶时的Tg,gel=48.64℃,在此基础上绘制了该体系的TTT图.  相似文献   

20.
本文叙述了复合材料结构件固化温度的测量方法,并通过模具温度测量、蜂夹层中温度测量及表面温度测量,简略地说明其基本参数及主要结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号