首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
传统极紫外成像光谱仪无法实时观测大范围的太阳活动.无缝成像技术使得光谱仪能够获得大视场范围内的太阳空间信息和光谱信息.通过无缝成像光谱仪成果分析,提出了一种改进的光学设计思路,并通过模拟数据重建证明其能够大幅提高多普勒速度反演的准确性,从而极大提高了观测数据的可信度.   相似文献   

2.
The solar soft X-ray (XUV; 1–30 nm) radiation is highly variable on all time scales and strongly affects the ionosphere and upper atmosphere of Earth, Mars, as well as the atmospheres and surfaces of other planets and moons in the solar system; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. While there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the lack of high spectral resolution measurements in this wavelength range. The conversion of the XUV photometer signal into irradiance requires the use of a solar spectral model, but there has not been direct validation of these spectral models for the XUV range. For example, the irradiance algorithm for the XUV Photometer System (XPS) measurements uses multiple CHIANTI spectral models, but validation has been limited to other solar broadband measurements or with comparisons of the atmospheric response to solar variations. A new rocket observation of the solar XUV irradiance with 0.1 nm resolution above 6 nm was obtained on 14 April 2008, and these new results provide a first direct validation of the spectral models used in the XPS data processing. The rocket observation indicates very large differences for the spectral model for many individual emission features, but the differences are significantly smaller at lower resolution, as expected since the spectral models are scaled to match the broadband measurements. While this rocket measurement can help improve a spectral model for quiet Sun conditions, many additional measurements over a wide range of solar activity are needed to fully address the spectral model variations. Such measurements are planned with a similar instrument included on NASA’s Solar Dynamics Observatory (SDO), whose launch is expected in 2009.  相似文献   

3.
The Sun is the nearest astrophysical source with a very intense emission in the X-ray band. The study of energetic events, such as solar flares, can help us to understand the behaviour of the magnetic field of our star. There are in the literature numerous studies published about polarization predictions, for a wide range of solar flares models involving the emission from thermal and/or non-thermal processes, but observations in the X-ray band have never been exhaustive.The gas pixel detector (GPD) was designed to achieve X-ray polarimetric measurements as well as X-ray images for far astrophysical sources. Here we present the possibility to employ this instrument for the observation of our Sun in the X-ray band.  相似文献   

4.
The variability and systematic variations of the properties of the upper mesosphere and lower thermosphere are probably the least well known aspects of the terrestrial atmosphere. Satellite measurements of this region are very limited and rocket and remote sounding techniques do not provide comprehensive coverage. Progress is being made in theoretical studies of this region, primarily with regard to tidal effects, and some progress is being made in analyzing the relatively sparse experimental data that are available. Turbulence dynamics of the region has been studied by analyzing structure measurements at Kwajalein, wind data from Natal and systematic variations of the turbopause altitude determined from measurements of the diffusive separation of argon. One question that is being raised at this time, and it is appropriate at a time near solar maximum, is the extent of solar activity control of the properties of this region of the atmosphere. The occurrence rates and magnitudes of the turbulent diffusivity in the 70 to 90 km altitude region appear to correlate with solar activity with a time lag, as do also the incidence of aurora and the atomic oxygen green line intensity. Solar cycle dependence has been identified in mean zonal wind speeds in the 65 to 110 km altitude region above Saskatoon and in lower thermosphere temperatures measured at Heiss Island and at St. Santin. Millstone Hill data show that the mean meridional wind changes during a solar cycle. Solar cycle variations have also been detected in the stratosphere and troposphere.  相似文献   

5.
天基X射线掠入射式成像望远镜发展现状   总被引:1,自引:1,他引:1  
阐述了太阳X射线成像观测在空间天气预报中的地位和作用,叙述了掠入射式X射线聚焦成像的基本原理,简要介绍了在轨成功运行的天体X射线成像望远镜和太阳X射线成像望远镜的基本设计和技术指标,并介绍了国内正开发研制的专门服务于空间天气预报的太阳X射线成像望远镜基本设计和主要特点.  相似文献   

6.
针对空间天气活动机理、机制及规律等方面研究需要,Kuafu卫星计划提出对日冕中性原子进行成像观测.通过分析日冕中性原子观测的科学意义和观测方法,采用编码调制方法进行日冕中性原子成像,并依据科学指标完成了整个仪器初步方案设计和仿真计算.仪器测量的中性原子能量范围为0.5~6MeV,视场范围为360°×10°.利用高压静电偏转电极板去除测量范围内的带电粒子,仪器由m序列编码调制栅网与硅半导体构成的成像结构及电子学箱共同组成.编码成像方案和仿真计算奠定了日冕中性原子成像观测的技术基础,可为空间天气中长期规律及预报等研究提供技术手段.   相似文献   

7.
A model of solar energetic particles (SEP) has been developed and is applied to solar flares during the 1990/1991 CRRES mission using data measured by the University of Chicago instrument, ONR-604. The model includes the time-dependent behavior, heavy-ion content, energy spectrum and fluence, and can accurately represent the observed SEP events in the energy range between 40 to 500 MeV/nucleon. Results are presented for the March and June, 1991 flare periods.  相似文献   

8.
9.
太阳活动变化分析   总被引:5,自引:0,他引:5  
利用Morlet小波变换方法对太阳黑子相对数进行了分析,对太阳活动变化得出了一些有意义的结果.太阳活动存在10.7 a和101 a的变化周期,以10.7 a周期最为显著.太阳活动强弱变化存在一定的阶段性,在1950年发生了气候突变,之后太阳活动明显加强,未来一段时间太阳活动较弱.   相似文献   

10.
The remote X-ray fluorescence spectroscopy is a powerful technique to investigate the elemental abundances in the atmosphere-less planetary bodies. The experiment involves measuring spectra of fluorescent X-rays from lunar surface using a low energy X-ray detector onboard an orbiting satellite. Since the flux of fluorescent X-ray lines critically depend on the flux and spectrum of the incident solar X-rays, it is essential to have simultaneous and accurate measurement of X-ray from both Moon and Sun. In the context of Moon, this technique has been employed since early days of space exploration to determine elemental composition of lunar surface. However, so far it has not been possible to exploit it to its full potential due to various reasons. Therefore it is planned to continue the remote X-ray fluorescence spectroscopy experiment on-board Chandrayaan-2 which includes both lunar X-ray observations and solar X-ray observations as two separate payloads. The lunar X-ray observations will be carried out by Chandra Large Area Soft x-ray Spectrometer (CLASS) experiment; whereas the solar X-ray observations will be carried out by a separate payload, Solar X-ray Monitor (XSM). Here we present the overall design of the XSM instrument, the present development status as well as preliminary results of the laboratory model testing. XSM instrument will have two packages namely – XSM sensor package and XSM electronics package. XSM will accurately measure spectrum of Solar X-rays in the energy range of 1–15 keV with energy resolution ∼200 eV @ 5.9 keV. This will be achieved by using state-of-the-art Silicon Drift Detector (SDD), which has a unique capability of maintaining high energy resolution at very high incident count rate expected from Solar X-rays. XSM onboard Chandrayaan-2 will be the first experiment to use such detector for Solar X-ray monitoring.  相似文献   

11.
The SOHO Solar EUV Monitor has been in operation since December 1995 onboard the SOHO spacecraft. This instrument is a highly stable transmission grating solar extreme ultraviolet spectrometer. It has made nearly continuous full disk solar irradiance measurements both within an 8 nm bandpass centered at 30.4 nm and throughout the 0.1 to 50 nm solar flux region since launch. The 30.4 nm flux, the 0.1 to 50 nm flux and the extracted soft X-ray (0.1 to 5 nm) flux are presented and compared with the behavior of solar proxies.  相似文献   

12.
During the past two years (2016-2018), great achievements have been made in the Chinese research of interplanetary physics, with nearly 100 papers published in the academic journals. The achievements are including but not limited to the following topics:solar corona; solar wind and turbulence; filament/prominence and jets; solar flare; radio bursts; particle acceleration at coronal shocks; magnetic flux ropes; instability; instrument; Coronal Mass Ejections (CMEs) and their interplanetary counterparts; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles and cosmic rays. The progress further improves our understanding of the eruptions of solar activities, their evolutions and propagations in the heliosphere, and final geoeffects on our Earth. These results were achieved by the Chinese solar and space scientists independently or via international collaborations. This paper will give a brief review of these achievements.   相似文献   

13.
分析研究了空间碎片数随太阳辐射流量F10.7的变化;给出预报F10.7长期变化的计算方法和预测空间碎片数的数学模型。结果显示:①强太阳活动造成空间碎片年增长率下降;②空间碎片数与太阳活动11年变化密切相关,相关数为0.9;③空间碎片增长率约为发射率的两倍;④若发射率保持不变,则到2020年,大于10cm的碎片数将达到14500;⑤若小碎片的增长为大碎片增长的两倍,则到2020年,大于1cm的碎片数可达125000。  相似文献   

14.
During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations.  相似文献   

15.
Photochemical modeling and satellite data has been used to investigate the response of ozonosphere to solar proton events (SPEs) of the current (23d) maximum of solar activity. First SPE after the minima of solar activity occurred in November 1997. One of the strongest SPE after this occurred in July 2000. It was assumed in photochemical calculations that the ionization caused by solar protons in the atmosphere produced additional amount of the NOX and HOX compounds. Model runs showed strong ozone depletion in the mesosphere after SPE of 14 July 2000 for both polar regions. Corresponding study of ozone variations measured by HALOE instrument placed on board of UARS gave similar picture as the model calculations for North polar region.  相似文献   

16.
Multi-slit spectropolarimeter is a next-generation spectropolarimeter to obtain vector magnetic field information at high spatial, spectral, and temporal resolution for studying the magnetic structures on the Sun. Once developed, it can be used as ground based instrument at solar observatories, also as a space payload for various solar missions. A high spectral resolution is invariably an important parameter for accurate vector magnetic field measurements and faster cadence is required for the study of dynamical evolution of structures (e.g., solar flares, sunspots etc.) on the Sun and hence better understanding on the physics behind their evolution.  相似文献   

17.
In-situ space observations of dust in the solar system are seldom possible. On the opposite, remote observations of solar light scattered by dust are relatively easy to perform from Earth- or satellite-based observatories; the evolution of the polarization of light scattered by dust particles as a function of the phase angle may provide information on the physical properties of these particles. Unfortunately, since remote observations are integrated along the line-of-sight of the observer, they can hardly be used to determine local physical properties. We have precisely developed Optical Probe techniques to forge the link between the numerous remote observations and the unique in-situ measurements. A short review of the remote observations of light scattered by cometary dust is first presented. Then, the Optical Probe concept is analyzed. Finally, the OPE instrument, which had been designed to optically probe the inner coma of comet Halley is described; its limitations and its achievements during Halley and Grigg-Skjellerup encounters are discussed.  相似文献   

18.
The total electron content (TEC) derived from the global positioning system (GPS) and the F2-layer peak electron density obtained from Digisonde data have been used to study the diurnal, seasonal and solar activity variations of the ionospheric equivalent slab thickness (τ) over three European stations located at Pruhonice (50.0°N, 15.0°E), Ebro (40.8°N, 0.5°E) and El Arenosillo (37.1°N, 353.3°E). The diurnal variation of the τ is characterized by daytime values lower than nighttime ones for all seasons at low solar activity while daytime values larger than nighttime characterizes the diurnal variation for summer at high solar activity. A double peak is noticeable at dusk and at dawn, better expressed for winter at low solar activity. The seasonal variations of τ depend on local time and solar activity, the daytime values of τ increases from winter to summer whereas nighttime values of τ show the opposite. The effect of the solar activity on τ depends on local time and season, there being very sensitive for winter nighttime values of τ. The results of this study are compared with those presented by other authors.  相似文献   

19.
Coronal spectroscopy has pushed forward the understanding of physical processes in all phenomena on the Sun. In this review we concentrate specifically on plasma parameters measured in sources of the slow solar wind in active regions and the early phases of solar flares. These topics are a key part of the science goals of the Solar Orbiter mission (Müller et al., 2020) which has been designed to probe what drives the solar wind and solar transients that fill the heliosphere.Active regions, outside of flaring, have general characteristics that include closed loops showing red-shifted (down-flowing plasma), and the edges of the active regions showing blue-shifted (upflowing plasma). Constraining and understanding the evolution, behaviour and cause of the flows has been developed in the past years and are summarised. Of particular importance is the upflowing plasma which, in some cases, can contribute to the slow solar wind, and this review concentrates on recent results on this topic.The early phases of solar flares and their energy sources are not yet fully understood. For decades, there has been a huge interest in pin-pointing the trigger of a solar flare. Coronal spectroscopy has revealed small-scale dynamics that occurs tens of minutes before the flare begins. The understanding of the trigger is key to improving flare predictions in the future, as well as understanding the physical processes.Finally we look to the future of coronal spectroscopy, with new instruments and methodologies being developed that build on the current knowledge, and will improve significantly our physical understanding of processes at all scales on the Sun.  相似文献   

20.
介绍了一种采用斜光学三角形测量结构和基于虚拟精密测量基准的太阳帆板平面度无接触测量系统.首次提出斜光学三角形测量结构,使得测量系统的测量面积和分辨率大大提高,从而实现了对大面积平面平面度的高精度无接触测量.提出的虚拟精密基准的建模与误差补偿技术,解决了在非精密基准上实现精密测量这一难题,使得所研制的测量系统利用现有平台可实现对太阳帆板平面度的高精度测量.此外,对测量光斑位置估值精度与光斑图像尺寸大小和能量分布之间的定量关系进行了分析,为激光光斑的优化设计提供了理论依据.实际测量结果表明,该测量系统对面积为2581mm×1755mm太阳帆板的平面度测量精度达0.02mm(RMS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号