首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过15个超高层建筑气动弹性模型的风洞试验,利用随机减量法从模型的风致加速度响应中识别了横风向气动阻尼比,并通过比较验证了识别结果的正确性。在此基础上,研究了矩形截面超高层建筑横风向气动阻尼的变化规律,考察了湍流度、高宽比、宽厚比对建筑结构气动阻尼比的影响。研究结果表明:来流湍流度和建筑的宽厚比是影响高层建筑横风向气动阻尼比至关重要的参数,而高宽比主要通过改变振动幅值来影响横风向气动阻尼;横风向气动阻尼比随折减风速变化的正负峰值大小基本随来流湍流度的增大而减小,气动阻尼比由正转负对应的折减风速随湍流度的增大而增大;宽厚比对横风向气动阻尼比的影响很大,当B/D1、B/D=1及B/D1时,气动阻尼比的变化规律几乎完全不同。基于这些研究数据,对横风向湍流度为0.67%~17.06%的风场中、高宽比5~10及宽厚比1/3~3之间的矩形截面超高层建筑,给出了适用于低折减风速区的横风向气动阻尼比经验公式。  相似文献   

2.
谭文渊  曹义华 《航空动力学报》2020,35(10):2166-2175
为保证舰载直升机的安全,本文基于嵌套网格方法,针对CG-47提康德罗加级巡洋舰搭载UH-60“黑鹰”直升机的机舰组合进行了流场仿真。研究了此组合在不同风向角及风速下的着舰流场,并结合飞行力学模型计算了直升机操纵量和姿态角。根据安全着舰判据,绘制了此组合的理论风限图。结果表明:滚转角及周期变距操纵量均随来流速度增加,俯仰角则受到来流和舰上建筑的多重影响。风向角越小,最大着舰速度越大,且总体左侧大于右侧。  相似文献   

3.
风向变化产生的航母甲板涡结构特征研究   总被引:1,自引:0,他引:1  
利用FLUENT对LHA船型进行数值模拟,将计算结果与LHA的风洞实验数据对比分析,验证了数值模拟的准确性.对全尺寸的美国CVN船型分别计算了0°和右舷20°风向角时的气流场工况,得到了舰载机降落航线上的速度分布,并且计算结果和实验值吻合得很好.通过涡量等值面和二维截面流线图,发现船首后面的涡的分离,甲板中心涡的周期性脱落,岛型建筑后面强烈的涡脱落以及甲板上不同涡旋的相互作用和演化过程.分析发现船体的整体尺寸和岛形建筑的形状和位置会影响船后涡旋的强度和位置.  相似文献   

4.
来流速度对防冰表面溢流水流动换热的影响   总被引:3,自引:0,他引:3  
为研究来流速度对防冰表面溢流水流动形态及换热的影响,基于空气-水两层相互作用的质量、动量和能量守恒,建立防冰表面溢流水水膜流动换热及破裂的数学模型,分析了防冰表面溢流水在不同来流条件下的流动形态和表面换热情况.计算分析表明:来流速度增加时,防冰表面相同位置处的连续水膜厚度减小,水膜破裂位置随之延后;较高来流速度条件下,破裂处水膜厚度稍有增加,使得破裂后形成的溪流厚度和宽度增大;作为主要的表面散热项,连续水膜表面蒸发及对流换热热流均随来流速度的增加而增大.此外,由水膜破裂引起的表面溢流水流态变化对防冰表面蒸发热流有一定影响.  相似文献   

5.
进气旋流畸变对压气机性能的影响   总被引:6,自引:1,他引:5  
为研究进气旋流畸变对压气机性能影响,在单级轴流压气机试验台上加装旋流发生器.利用所设计的旋流发生器,产生不同旋转方向及不同强度的整涡旋流畸变和对涡旋流畸变,分析其对压气机性能、稳定性的影响.结果表明:在一定旋流畸变强度下,正向整涡旋流畸变会减小压气机增压能力,但增加压气机稳定裕度;相比之下,反向整涡旋流畸变对压气机增压能力影响较小,但对稳定性有显著影响.对涡旋流畸变对于压气机的增压能力影响较小,可以忽略不计,对压气机稳定性有一定的影响.   相似文献   

6.
姚李超  付超  张俊强 《航空动力学报》2020,35(10):2064-2077
采用大涡模拟方法对非定常来流压力条件下叉排管束预冷器换热特性进行了研究,同时运用动力学模态分解方法对流场主控流动结构进行了识别,探讨了来流压力周期性变化频率对预冷器内部流动、换热性能和熵产的影响。结果表明:来流压力变化频率对预冷器时均和瞬态换热性能影响均不显著,但当来流压力变化频率增大至流场固有频率950 Hz时,流场发生共振,换热性能发生剧烈振荡;管束壁面剪切层运动和绕流脱落涡结构为主控流动结构,其时空演化过程对瞬时换热性能起决定作用;当流场发生共振时,剪切层的生长和演化与来流速度的脉动密切相关,前排管束的绕流涡脱落周期与来流压力/速度变化周期一致,而壁面剪切层的生长周期则为来流压力/速度变化周期的两倍。此外,叉排管束流场的换热熵产决定于主控流动结构,其时空演化特征与主控流动结构演化规律完全一致。  相似文献   

7.
进气道旋流模拟及测量的风洞试验研究   总被引:8,自引:1,他引:7  
利用设计的叶片式旋流发生器,在某小型低速风洞中进行了整体涡旋流、局部涡旋流、对涡旋流的模拟.对三孔探针、五孔探针进行了标定,对所模拟出的旋流进行了测量。风洞试验结果表明:发动机进口前2倍直径处安装旋流发生器可保证旋流的强度最大;设计的旋流发生器可产生28°的整体涡旋流;旋流发生器叶片攻角对旋流强弱的影响较为明显;不同叶片布局方式可得到不同形式的旋流流场;旋流的诱导速度对旋流中心位置有较大的影响;三孔探针用于测量旋流时受径向偏转气流的影响,时有不稳定现象。  相似文献   

8.
在飞行器飞行过程中,安装在机头上的各类传感器结冰会对飞机的飞行安全产生不利影响。而液态水含量是影响飞机结冰的重要参数,为了更好地进行传感器结构及布局设计,对机头附近液态水含量分布规律进行数值研究。采用计算流体力学方法对飞机飞行时的空气-过冷水滴的稀疏两相流场进行数值模拟,通过求解N-S方程获得空气流场,采用欧拉法求解水滴运动场得到水滴运动轨迹。分析在不同来流马赫数、来流迎角及液滴直径等条件下,机头关键截面上广义水滴遮蔽高度的变化及机头关键位置上液态水含量的变化规律,研究不同状态参数对液态水含量分布的影响。结果表明:水滴遮蔽高度及浓度增加区范围随马赫数增大而增加,迎角的变化对机头上下表面液态水含量分布产生相反的影响。  相似文献   

9.
独柱式桥塔易发生风致振动,当塔柱倾斜且采用变截面形式时,风的作用下常表现出复杂的三维流动效应。为考察独柱式变截面斜塔静动力气动性能,通过桥塔刚性模型测力风洞试验测试了不同风向角下桥塔气动力系数,对比分析了桥塔三维绕流的影响。通过桥塔气弹模型测振风洞试验,测试了涡激振动起振风速及振幅,对比了来流风向及阻尼比对桥塔涡激振动的影响。研究结果表明,桥塔整体气动力系数及断面等效气动力系数沿塔高的变化规律受来流风向角的影响显著,顺桥向风作用下倾斜桥塔易发生横桥向涡激振动,提高结构阻尼比,可有效抑制涡振。  相似文献   

10.
冲击/发散冷却层板隔热屏冷却性能及对比   总被引:4,自引:1,他引:3  
刘友宏  李英  杨旭 《航空动力学报》2014,29(6):1272-1278
为了分析对比新型冲击/发散冷却层板隔热屏冷却性能,论证其应用于加力燃烧室的可行性,在3种不同主次流总压比条件下对其进行了三维流固耦合传热数值模拟研究,并与某型波纹板隔热屏和单层平板隔热屏进行了相同工况的对比分析,得到了冷却效果、冷气用量、冷气热负荷和次流总压损失系数等的对比结果和变化规律.结果表明:冲击/发散冷却层板隔热屏具有较好的冷却效果,但其受主次流总压比变化的影响较大.相比某型波纹板,冲击/发散冷却层板隔热屏的冷气消耗量平均减少41.6%,单位面积冷气热负荷平均降低65.9%.  相似文献   

11.
城市街区与建筑物对气流特征影响的数值模拟研究   总被引:12,自引:0,他引:12  
利用一个湍流能量闭合的三维城市街渠气流模式对一个范围为 1 2 5 0m× 1 2 0 0m的居民小区中的建筑物群体对不同来流风向下小区内的流场结构的影响进行了诊断分析。模拟表明 :小区内建筑物复杂的几何形状所引起的空气动力学强迫作用使得该区域内的气流结构十分复杂。建筑物的阻挡和拖曳作用会在低层产生风速的亏损  相似文献   

12.
进气道旋流模拟及测量的实验研究   总被引:12,自引:8,他引:4       下载免费PDF全文
叶飞  张堃元  姜健  史建邦 《推进技术》2009,30(3):297-301
进气道出口旋流是影响进气道/发动机相容性中的一个重要因素。为在地面试验中评价进气道旋流对发动机稳定性的影响,设计了叶片式旋流发生器,并在风洞中进行了整体涡旋流、对涡旋流两种基本旋流流场的模拟,实验中利用在固定马赫数下校准的五孔探针测量了所模拟的旋流场。风洞实验结果表明,按照不同布局方式来安装叶片,可以得到不同形式的旋流场;旋流发生器叶片攻角对旋流强弱的影响较为明显;旋流的诱导速度对旋流中心位置有很大的影响。  相似文献   

13.
对表面光滑和有脊状结构的大尺度回转体模型在风洞中进行了变速度、变攻角试验,为脊状表面减阻技术的工程化应用提供了参考.对比分析发现:来流速度对脊状表面减阻效果有很大影响,减阻效果随速度增加呈现先增大后减小的趋势,在某一速度达到最佳,减阻效果提高20%;攻角对脊状表面减阻效果影响有限;脊状结构的存在对模型升力系数和俯仰力矩...  相似文献   

14.
舰载直升机所处的环境恶劣,易出现旋翼桨尖过度挥舞及机身碰撞等事故,研究直升机舰面气弹响应可预防此类事故的出现。应用 CFD 方法获得舰船流场数据,结合桨叶动力学模型,综合提出旋翼气弹响应计算分析方法,研究不同来流速度、悬停位置与风向角下旋翼的气弹响应。结果表明:本文提出的气弹响应计算分析方法正确可行;舰船来流速度的增加...  相似文献   

15.
为揭示2元圆转矩喷管尾喷流强化掺混的内在机制,应用大涡模拟(LES)方程对2种相同进、出口直径的喷管模型(轴对称、2元圆转矩)在Ma=0.8、高雷诺数(2×10~5)条件下进行了数值模拟计算。结果表明:与轴对称喷管相比,圆转矩喷管射流掺混效应增强,速度衰减快,核心区长度和高温区域面积减小。同时尾喷流拟序结构变化说明:2种喷管主要拟序结构均包含涡环、涡辫、发卡涡、螺旋涡等相似结构;但圆转矩喷管在射流近场诱导出的涡旋更丰富,边角剪切涡发展更快,形成明显的CVP结构,导致其射流柱失稳时刻提前、距离缩短;同时,喷管形式的改变使得射流剪切层内雷诺应力增大,速度脉动增强。拟序结构发展及雷诺剪切应力变化说明在射流流场中涡旋发展耗散速度增大、速度边界层脉动增强、射流柱易失稳是导致射流掺混增强的本质因素,为异形喷管的强化掺混机理提供了依据。  相似文献   

16.
为了研究进气旋流畸变对压气机性能和稳定性的影响,设计了一种能够产生典型对涡与整体涡可变弯度叶片式旋流畸变发生器。结合正交仿真试验设计方法,分别以对涡旋流强度为优化目标和以对涡旋流强度、整体涡旋流强度和整体涡总压恢复系数为综合优化目标对旋流畸变发生器的几何参数,包括叶片稠度、叶片数量以及轮毂比等进行气动优化设计,并采用CFD数值模拟仿真研究了旋流畸变发生器生成旋流特征。经过单指标优化分析,旋流畸变发生器生成对涡旋流强度最高可达24.60°,整体涡旋流强度最高可达38.73°。经过多指标综合优化,旋流畸变发生器生成对涡和整体涡的总压恢复系数分别提高了4.26%和3.57%。叶片式旋流畸变发生器设计具有结构简单、操作方便、试验周期短等优点,并具有较好的工程应用性。  相似文献   

17.
非定常自由来流对二维翼型气动特性的影响研究   总被引:2,自引:0,他引:2  
利用计算软件和实验测量方法,研究了非定常自由来流对静态二维翼型气动特性的影响,分析研究了来流速度脉动频率变化对气动特性产生的作用.结果表明,来流速度以短周期脉动时,升力系数随来流速度的减小而增加;来流速度以长周期脉动时,升力系数随来流速度的减小而减小.分析表明这与前缘分离涡在翼面上的传递过程有关.又利用二维翼型动态实验台,研究了非定常自由来流对做动态运动的二维翼型气动特性的影响.结果表明,来流风速的脉动使升力系数的迟滞包线进一步扩大,最大升力系数增加.  相似文献   

18.
气膜孔倾角对层板隔热屏冷却性能影响   总被引:5,自引:5,他引:0       下载免费PDF全文
刘友宏  任浩亮 《推进技术》2016,37(2):281-288
为了获得气膜孔倾角对层板隔热屏(冲击/发散复合冷却隔热屏)冷却性能的影响规律,基于加力燃烧室真实工况,对0°到90°范围内的十种不同气膜孔倾角的层板隔热屏进行了三维流热耦合数值模拟研究,得到了层板隔热屏冲击壁面Nu数、层板隔热屏气膜冷却表面的冷却效果、层板隔热屏冷流体热负荷及气膜孔流量系数的变化规律。结果表明,气膜孔倾角的变化对冲击壁面Nu数的影响较小;气膜冷却表面的综合冷却效果随气膜孔倾角的增大而减小,15°倾角模型比10°倾角模型的平均综合冷却效果降低2.8%;单位面积冷流体热负荷随气膜孔倾角的增大而增大,最小值比最大值低30.7%;气膜孔倾角对层板隔热屏平均流量系数的影响不大,但上游气膜孔的出流会对下游气膜孔的流量系数产生影响。  相似文献   

19.
T型尾翼在结构和气动布局方面比较特殊,这种结构布局通常使得垂尾的弯曲频率和扭转频率非常接近,从而导致颤振速度过低使得颤振特性恶化。目前,颤振数值计算通常采用MSC.NASTRAN和ZAERO商用软件,但这些软件未考虑由于气动耦合等因素所带来的附加非定常气动力,本文以某型水陆两栖飞机T型尾翼为例,以模型风洞试验方式研究了其颤振特性和来流迎角对颤振的影响,试验得出不同来流迎角对T尾颤振速度影响的趋势曲线,为理论设计、数值分析和适航审查提供借鉴和指导。  相似文献   

20.
撞击流混合器速度信号的Hilbert-Huang变换分析   总被引:1,自引:0,他引:1  
应用激光多普勒测速系统,对撞击流混合器的流场瞬时速度进行了测量。将Hilbert-Huang变换(HHT)应用于瞬时速度信号的分析,提取出各阶内禀模态函数(IMF)并通过经验模态分解(EMD)对速度信号进行滤波降噪。通过希尔伯特谱分析(HSA)确定了撞击流混合器速度信号的能量分布状况,信号能量集中于低频区,即存在于尺度较大的流体涡旋中。分析速度信号各阶内禀模态函数在不同频段的能量分布与转换,发现不同频段IMF的能量分布与流型转变之间的对应关系。通过能量特征值的提取表明,提高螺旋桨转速有助于强化系统的混合效果。最后将撞击流混合器的流场由内而外划分为中心区、涡旋区和回流区3个部分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号