首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为获取燃气射流对上游水域的影响特性,采用燃气发生器和水下实验系统,研究了水下超声速燃气射流的气泡生长及演变过程,以及气泡压力波在水中的传播特性,并研究了压力波在水介质中的衰减规律。研究表明,燃气泡生长和"破碎"伴生着压力脉动在水介质中传播,气泡压力波的能量在水介质中快速衰减。  相似文献   

2.
通过实验在激波管中研究了平面激波冲击锯齿形界面的流动不稳定性演化过程,重点关注锯齿形界面初始顶角角度对气泡竞争的影响。利用肥皂膜技术生成初始气体界面,并采用高速摄影结合纹影方法对波后流场进行观测。结果表明:在界面发展早期,大、小界面几乎独立发展,说明气泡竞争在早期不起作用;随着时间发展,气泡竞争起作用,且随着锯齿形界面角度改变而变化,角度越小,界面上产生的斜压涡量越大,界面发展越快,气泡竞争越早出现且作用越显著。气泡竞争能够促进大气泡、抑制小气泡的振幅增长,且对小气泡的影响更大。气泡竞争同时会导致尖钉结构扭曲,进而改变界面总体振幅。气泡头部位移差在进入非线性增长之前会经历两个线性阶段,且第二个线性增长率较小,表明非线性效应在该阶段具有重要作用,大气泡受到非线性效应的影响更大。不同条件下的气泡位移差无法归一化,说明初始顶角角度对气泡竞争和界面演化具有重要影响。  相似文献   

3.
针对脉冲爆轰发动机在水下工作过程中形成的燃气射流问题,搭建了水下爆轰燃气实验系统,研究了第一个爆轰循环在水下的燃气泡发展变化过程。建立了基于气液两相双流体模型的脉冲爆轰发动机水下喷射模型,采用时-空守恒元和求解元方法,模拟了爆轰波退化为激波在水中的传播及衰减过程。研究结果表明:燃气泡前期受外界水环境阻滞作用呈现“豌豆状”形态,充分发展阶段气液交界面逐渐失稳,在达到最大尺寸后开始收缩并在中心轴线位置出现凸出的射流;水下爆轰燃气射流发展过程中同时存在脱离燃气泡的水中前导激波和管口燃气泡内的高压区两部分,水中前导激波在传播过程中压力迅速衰减至常压量级,而管口燃气泡内则一直保持较高压力;中心轴线区域气液交界面处反射激波的回传使管口附近出现回击现象,并导致前导激波波阵面上压力峰值逐渐出现在30°方向上。  相似文献   

4.
超声速流场中侧向射流的数值研究   总被引:3,自引:0,他引:3  
通过数值方法研究拱柱体上侧向射流与超声速来流的相互干扰,为侧向射流喷管出口横截面几何形状的设计提供依据,实现高速飞行器机动飞行的姿态控制。采用多块嵌套网格并行算法,数值求解Navier-Stokes方程以及k-ω湍流模型,分别对四种不同横截面形状(相同面积的圆形、椭圆形、楔形以及倒置楔形)的射流喷管出口形成的流场进行了研究。圆形喷管出口的流场数值计算结果与实验结果相一致,表明本文采用的数值方法可靠以及网格分布合理。对比物面压力分布和射流干扰放大因子发现,对于长轴与来流垂直的椭圆形喷管出口,在射流上游一侧的物面附近形成较大的分离区以及较强的激波,由此产生的高压区有利于侧向射流对飞行器姿态的控制。  相似文献   

5.
水下高速射流气泡变化过程数值研究   总被引:13,自引:9,他引:4       下载免费PDF全文
朱卫兵  陈宏  黄舜 《推进技术》2010,31(4):496-502
为研究水下高速射流气泡变化规律,采用VOF(Volume of Fluids)模型分别对水下等温高速气体射流和热高速气体射流动态流场进行了气水耦合数值求解。其中热射流考虑了汽化因素对气泡内气流场的影响,数值模拟了气泡的形成、发展、断裂及融合过程,揭示了气泡中压力和马赫数等参数的变化规律,得出了水下点火初期的流场特征。研究发现:在相同入口压力下,热射流产生气泡的空间尺度比等温射流产生的气泡空间尺度要小;气泡发展过程中会出现颈缩,也可能断裂,断裂与否取决于气泡颈缩处内外压差,气泡的颈缩与断裂是产生压力脉动的重要因素,并决定了压力峰的位置和大小,气泡断裂位置越靠近喷管出口,压力峰值越大,该压力峰值会影响火箭发动机尾流场特性。  相似文献   

6.
胡志涛  余永刚 《推进技术》2016,37(9):1638-1648
为研究不同喷孔结构的燃气射流在受限液体工质空间的扩展特性,采用VOF(Volume of fluids)模型分别对圆柱形充液室中圆形射流和矩形射流扩展过程进行气水耦合数值求解。考虑了燃气可压缩性、流体粘性和热量交换因素对射流扩展特性的影响。通过数值模拟,获得圆形射流扩展形态及轴向速度计算值,与实验结果吻合较好。在此基础上,进一步对比分析了矩形射流和圆形射流的扩展特性,获得射流场中密度、压力、温度和速度的分布图以及涡的演化过程。计算结果表明:燃气自喷孔喷出,由于出口处压力较大,高温燃气继续膨胀产生膨胀波,膨胀波在气液界面反射形成压缩波,圆形射流的膨胀波和压缩波均比矩形射流强。燃气射流扩展过程中,由于周围液体惯性效应,气液卷吸掺混效应以及膨胀压缩波作用,圆形射流的压力场和温度场分布较矩形射流更加复杂,同时刻的圆形射流轴向扩展速度也比矩形射流小。从速度云图发现矩形射流的速度核心区比圆形射流速度核心区要短;同时从圆形射流和矩形射流不同截面流向速度分布图发现流向速度峰值均发生了偏移,但矩形射流发生偏移的区间更长,偏离距离更远。  相似文献   

7.
为了探讨超声速欠膨胀椭圆射流的流动特征,采用大涡模拟(LES)方法与高精度混合格式对出口压力比N分别为14、24、40的欠膨胀椭圆射流流场结构进行数值模拟。结果清晰描述了欠膨胀椭圆射流的三维(3 D)结构特征与发展规律,并分析了因喷嘴方位曲率不一致而导致长轴与短轴平面上激波结构出现差异的原因。另外,结果还发现:当N为24时,短轴平面上射流域内的激波结构已由正规反射转变为马赫反射,但长轴平面上仍维持正规反射,而当N为40时,长轴与短轴平面上的激波结构均为马赫反射结构,由此可知喷嘴方位曲率变化越平缓,马赫反射形成所需的出口压力比越大。   相似文献   

8.
由于旋转爆轰燃烧室具有自增压、热效率高的特点,将航空涡轮发动机的燃烧室替换为旋转爆轰燃烧室可进一步提高发动机性能。本文基于非稳态雷诺时均Navier-Stokes方法,采用k-ε湍流模型,针对旋转反压与离心式压气机叶片的相互作用开展三维数值模拟,研究旋转反压形成的前传压力波与扩压器及叶轮叶片的相互作用,分析旋转反压传播方向对前传压力波运动过程的影响。结果表明:旋转反压会在压气机内形成前传压力波,其与扩压器和叶轮的叶片相互作用,形成复杂的波系结构。当旋转反压传播方向与叶轮旋转方向相反时,前传压力波的压力峰值在扩压器内先下降后上升,在进入叶轮通道后迅速下降,无法到达叶轮入口。当旋转反压传播方向与叶轮旋转方向一致时,压力波波形发生明显变化,其与扩压器叶片相互碰撞导致强度明显下降,向上游传播距离更短。  相似文献   

9.
为了研究空气喷注环缝宽度对两相旋转爆轰波压力与频率特性的影响,通过改变环缝宽度与当量比开展了大量实验研究。旋转爆轰发动机环形燃烧室外径、内径以及长度分别为204mm、166mm和155mm。汽油和高温空气采用高压雾化喷嘴与环缝对撞喷注的方式进行混合,以此提高推进剂的掺混效果与活性,发动机采用预爆轰管作为点火装置。实验通过燃烧室内测得的高频动态压力信号,对两相旋转爆轰波的传播稳定性、压力特性以及频率特性进行了详细分析。实验结果表明:在不同环缝宽度下均实现了高总温空气与汽油的两相旋转爆轰。当环缝宽度为3mm和4mm,旋转爆轰波平均峰值压力与传播频率均随着当量比增大而增大;增加环缝宽度至6mm,爆轰波传播稳定性变差,平均峰值压力与传播频率随当量比先增大后减小。当环缝宽度为4mm,获得的旋转爆轰波平均峰值压力最高,压力脉动强度最小,爆轰波传播稳定性最强。在一定工况范围内,增加当量比可有效降低爆轰波峰值压力脉动强度。此外,随着空气环缝宽度的增加,爆轰波传播频率整体降低。当环缝宽度为3mm,当量比为1.19时,爆轰波以单波模态在环形燃烧室内连续旋转传播,平均传播速度约为1176.6m/s,爆轰波传播速度存在严重亏损。  相似文献   

10.
为了研究基于涡流发生器(VG)射流原理的先进旋涡燃烧室(AVC)燃烧及流动性能,对不同射流参数(射流前倾角α、侧倾角β、射流孔径D及射流比R)时燃烧流场进行了数值模拟。结果表明,基于涡流发生器射流原理的AVC性能优于传统射流AVC。增大α及β,可以提高燃气掺混率,增大凹腔中心湍流度,并使更多的热能转化为燃烧室出口动能,但是总压损失明显增大。增大侧倾角β可使凹腔内高温分布更均匀。随着射流孔径D及射流比R的增大,燃烧室整体温度分布先增大后减小。当α=60°,β=60°时燃烧室能够在贫燃条件下实现高温、低压降、低污染的稳定燃烧。  相似文献   

11.
不同出口倾角合成双射流流动特性及边界层控制   总被引:2,自引:2,他引:0  
王林  刘冰  夏智勋  罗振兵 《推进技术》2010,31(6):757-763
基于合成双射流全流场计算模型———X-L模型,对不同出口倾角合成双射流的流动特性进行了数值研究。平直出口合成双射流激励器工作时,合成双射流在出口下游相互作用融合成一股射流,且合成双射流间有"自给"现象的发生;倾斜出口合成双射流激励器工作时,在激励器出口下游会形成一股沿壁面的流动,该壁面流可以对周围流体进行有方向的能量和质量输送;随着激励器出口倾斜角度的增大,合成双射流间"自给"现象减弱,沿壁面流速度增大。然后,对不同出口倾角合成双流激励器进行边界层流动控制进行了初步研究。结果显示,合成双射流激励器可控制边界层流动,通过改变激励器出口倾角可以实现对边界层内速度型"饱和"程度的控制。  相似文献   

12.
在气-液界面Richtmyer-Meshkov(R-M)不稳定性研究的基础上,利用不同流体间密度的差异,构造了空气-硅油-水、空气-酒精-硅油两种流体粘度方向迥异的气-液-液三相界面,实验中以氮气作为高压驱动气体,在不同激波马赫数下对这两种界面R-M不稳定性后期尖钉与气泡区发展进行了测量与统计,通过对实验数据的分析,得出了相关规律,并用这些规律与已有的单层气-液界面R-M不稳定性研究成果作比较,得出了异同点。同时,还研究了两种三相界面在R-M不稳定发展中的差异。实验结果表明:当流体的粘度梯度方向(从小到大的方向)与激波方向一致时,界面失稳更加明显,湍流混合更为显著。  相似文献   

13.
燕小芬  王兵  王希麟 《推进技术》2007,28(3):253-256,260
为了探讨小突片喷口的两相湍射流中颗粒对气相场的影响,采用三维颗粒动态分析仪PDPA测量了气相湍流度的分布,证实了小突片对单相湍射流的强化混合作用。进一步的测量结果表明,在安装小突片喷口的射流中,大小粒径不同的颗粒对气相湍流的调制作用与圆喷口射流中相反。研究表明,当小突片和颗粒多种因素共同作用于湍射流时,最后的效果不等于每种因素单独作用效果的简单叠加。  相似文献   

14.
水雾对火箭射流压力脉动抑制效果的数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
谢建  谢政  杜文正  常正阳  姚晓光 《推进技术》2018,39(12):2718-2727
为研究水雾对火箭射流压力脉动的抑制效果,以火箭在地下有限空间内发射为研究对象,采用平面波跨介质传播理论分析了水雾对压力脉动的抑制机理和效果。采用计算流体力学方法,考虑水滴破碎和蒸发作用,详细揭示了射流压力脉动与水雾的作用过程,并研究了水雾参数对压力脉动抑制效果的影响规律。数值结果表明,不同水滴直径的水雾对压力脉动有2种不同的抑制机理,当水雾的水滴直径大于0.7mm时,水雾对压力脉动的抑制效率随水滴直径增大而降低;当水滴直径小于0.7mm时,抑制效率受水滴直径变化的影响可以忽略;临界直径的值是压力脉动时间特性的函数。此外,水雾的浓度越高,水雾对射流压力脉动的抑制效果越好;压力脉动抑制效果与水雾层厚度之间呈类似抛物线关系,当水雾层厚度为0.3m时,传递系数不大于0.43,水雾对射流压力脉动有最优的抑制效果。  相似文献   

15.
液体射流撞击过程是液体火箭发动机常见的高效雾化方式。为了进一步探究液体射流撞击雾化过程,采用高速摄像仪和图像处理技术对两股液体射流撞击液膜的振荡行为进行了实验研究,考察了射流韦伯数(21≤We≤1356)和撞击角(2θ=60°,90°,120°)对液膜振荡的影响。结果表明,随着射流韦伯数增大(We250),撞击液膜会从竖直稳定模式转变为振荡模式,促进液膜破裂和雾化。增大撞击角能加剧液膜振荡和增加雾化角。2θ=60°和90°的液膜振荡区间为250We400,2θ=120°的液膜振荡区间为We250,无量纲振幅的时均极大值约为5。结果揭示了随着液体射流速度的增大,射流不稳定性的发展会引起撞击点的动量不平衡,进而形成液膜振荡。此外,液膜向下传播时与空气界面间的Kelvin-Helmholtz不稳定性也促进液膜振荡。  相似文献   

16.
预爆震管已成为旋转爆震发动机的主流点火方式,为研究预爆震管点火方式下旋转爆震波的起始和传播过程,本文采用动态压力传感器、离子探针以及高速摄影等实验手段,分析了旋转爆震波的建立过程,探讨了预爆震管与燃烧室的相互作用,总结了预爆震管出口直径、初始填充压力以及排气时间对旋转爆震波建立和传播的影响。研究表明:由于衍射作用,从垂直安装预爆震管传出的爆震波,在燃烧室内迅速发生解耦,形成来两道传播速度相同、方向相反的的低速燃烧波。两道燃烧波沿燃烧室周向不断加速并对撞,对撞多次后最终发展成一道旋转爆震波。预爆震管出口直径对旋转爆震波建立时间的影响要明显大于初始填充压力的影响。增大预爆震管出口直径,可提高燃烧室内初道激波和燃烧波的强度,有利于降低DDT时间,但由于预爆震管对旋转爆震波的传播具有一定消弱作用,旋转爆震波的平均传播速度略有减小。当预爆震管处于排气阶段时,旋转爆震波仍可稳定传播,其排气过程并不影响旋转爆震波建立时间。  相似文献   

17.
环形射流初始压力对激波聚焦起爆的影响分析   总被引:3,自引:2,他引:1  
为了研究射流入射压力对环形激波聚焦爆震起爆的影响,以氢气和空气混合物为例,对不同射流入射压力下环形激波聚焦爆震起爆过程进行了数值模拟,结果表明,当环形射流入射强度足够大时,其形成的激波聚焦能够形成高温、高压区域,从而直接起爆爆震波;爆震管推力壁对激波具有反射加强作用,有助于爆震波的形成;环形射流入射压力存在一个临界值,低于此值时,则不能起爆爆震波.   相似文献   

18.
唐亮  胡锦华  刘计武  李平  周立新  杨宝娥 《航空学报》2020,41(12):124061-124061
倾斜射流撞壁在液体火箭发动机液膜冷却、射流撞壁雾化等领域具有广泛的应用。为了研究倾斜射流撞击壁面后形成的液膜的关键特征,开展单股圆柱射流撞击壁面的实验研究。从实验中研究各射流参数对液膜外形的影响规律,继而开展理论建模,获取液膜外形的关键几何参数表达式。实验研究发现随着射流倾角增大,液膜长度减小而宽度增大,随着射流孔径和射流速度增大液膜长度和宽度均增大这一定性规律。理论分析得到了液膜最大宽度位置与液膜对称面的夹角近似等于射流倾角α,液膜的长宽比近似等于1+cot α。通过进一步分析得到液膜宽度、最大宽度距撞击点的距离、液膜长度这几个液膜关键参数的表达式。建立的液膜几何参数表达式预测结果与实验结果的误差均在20%以内。  相似文献   

19.
反射激波作用下两种重气柱界面不稳定性实验研究   总被引:2,自引:0,他引:2  
在水平方形激波管中对两种无膜重气柱界面(分别是SF6和氩气)在反射激波作用下的不稳定性发展进行了实验研究。气柱界面采用射流技术形成,实验采用连续激光片光源照射流场,乙二醇作为示踪粒子,并用高速摄像机对流场进行拍摄,获得了入射激波以及反射激波共同作用下,两种不同气柱界面的演化过程。实验结果表明,两种气柱的Atwood数不同,界面演化速率不同,反射激波到达前后的界面形态不同。SF6气柱在入射激波作用下会产生两个比较明显的反向的涡环结构,而氩气柱界面上由于产生的涡量较少,涡环结构并不明显。在反射激波作用下,SF6气柱界面会出现明显的次级涡对,而且次级涡对的旋转方向与初始涡环结构的旋转方向相反。对于氩气柱而言,在反射激波作用下虽然也产生了与初始涡环方向相反的次级涡对,但次级涡对始终未充分发展。这是因为反射激波作用时氩气柱界面的Atwood数较小导致氩气柱界面上产生的反向涡量较少。实验结果充分表明了气体Atwood数对界面不稳定性的发展起到了较大的影响。  相似文献   

20.
基于横向二次射流的水下推力矢量方法   总被引:2,自引:1,他引:1       下载免费PDF全文
提出一种基于横向二次射流的水下推力矢量技术,通过二次射流的横向速度场诱导主流发生偏转,建立了推力矢量偏角与流速偏角的数学关系,证明了通过主流偏转实现推力矢量偏转的有效性。通过数值计算方法分析了不同二次射流深度、不同二次射流/主流体积比及不同二次射流/主流速度比条件下主流偏转角度变化。结果显示:随着二次射流深度的增加,主流受到壁面阻碍作用增强,因而偏转角度减小。随着二次射流/主流体积比的减小,出口负压区所占比例减小,主流偏转角度增加,且当体积比减小到一定值后,负压影响可以忽略,主流不再随体积比而变化。主流偏转角度随速度比增加而增加,且在速度比一定的条件下,速度数值的变化对主流偏转没有影响。设计了一种主流为圆形射流的水下矢量推进器,对其数值分析结果揭示:当位于射流中剖面同侧的二次射流全部作动时,主流可以取得最大的偏转角度,且主流的偏转方向可以通过使不同的二次射流组合处于作动状态进行控制。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号