首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文介绍激光雷达系统的组成和测量原理;提出了一种作为交会对接全过程测量敏感器的复合式激光雷达。所谓复合式就是把激光雷达与光学成象敏感器有机结合起来,远、中距离由激光雷达承担测量任务,近距离测量由CCD光学成像系统来完成。  相似文献   

2.
基于数字近景摄影测量的天线变形测量   总被引:4,自引:2,他引:2  
文章介绍了基于数字近景摄影测量原理的天线变形测量方法。该方法利用2台CCD相机交会摄影来获取被测面图像,并对被测面上特殊标志点进行中心坐标提取,然后利用光束法平差解算标志点中心坐标。测量精度可达到1:50000,可用于卫星天线研制过程中空间环境模拟试验的检验,为卫星天线在轨正常工作提供可靠性保证。  相似文献   

3.
由于各种因素的影响,在轨机械臂的结构参数势必不同于其在地面时的结构参数。为提高机械臂作业时的定位精度,必须对其进行重新标定。提出了一种自带CCD相机的空间机械臂结构参数的自标定方法,解决了在太空中无外部测量设备参与时机械臂的标定问题,使机械臂末端操作器的精确定位成为可能。仿真结果验证了所提方法的正确性。  相似文献   

4.
天基照相跟踪空间碎片批处理轨道确定研究   总被引:1,自引:0,他引:1  
随着国内外天基观测空间碎片研究的展开,文章提出了利用跟踪卫星的CCD(Charge
Coupled Device)相机对空间碎片进行轨道探测的方法,首先建立了CCD照相观测模型和基于 照相观测 的空间碎片批处理轨道确定模型。通过对CCD相机底片归算方法的分析可知,利用
CCD相机所获得的观测数据与跟踪卫星的姿态无关,且其精度只与测量和坐标转换计算的精 度有关,在测量和计算中可获得较高的精度。分别对分布密度较高的低轨道和地球同步 轨道区域的空间碎片进行了定轨分析。仿真结果表明,定轨时采用两个跟踪弧段的照相数据 定轨精度大大高于一个弧段照相数据的定轨精度;跟踪卫星距离空间碎片越近,定轨精度越 高;低轨道空间碎片的定轨精度高于地球同步轨道上的空间碎片定轨精度。
  相似文献   

5.
Space is now a global business, yet the cost of getting to space is still high. Developing new launch vehicles that are cheaper, safer, and more reliable is the key to both rapid commercial growth and to more and better government uses of space. However, the R&D process leading to new launch vehicles is expensive and technically challenging; the past 50 years have seen many government development programs, but no major technological breakthroughs. Perhaps, it is therefore time to think about other ways of developing new launch vehicles. The best expertise in this field resides primarily with private companies and is spread across many actors and nations. A consortium led by space firms might be a better approach to opening up space in the 21st century. Governments will have to develop new policies treating space as though it were a commercial industry, in particular, relaxing export trade restrictions wherever possible. Issues of dual-use may be outweighed by the rapidly growing widespread availability of launch capabilities. Since new launch vehicles will require large up-front R&D expenditures, government support will continue to be needed to supplement private capital funds. Contributions to this effort should be international. However, difficult it might be in today's security conscious environment to reorient government policy, doing so may offer the most efficient and successful way to break the technological and economic barriers to more reliable access to space.  相似文献   

6.
李由  王春慧  严曲  张小虎  谢良 《宇航学报》2019,40(6):725-732
SpaceMocap是一套基于多RGB-D相机的计算机视觉航天员运动捕捉系统。地面准备阶段,扫描航天员模型,并分别标定彩色相机的内参数。在轨采集阶段,3~4台相机布置在舱内角落,同步采集航天员任务视频。地面处理阶段,通过相机外参数标定和ICP方法实现点云融合,采用深度神经网络对人体关节点位置进行检测并初始化位姿参数,再用改进的ICP方法进行位姿求精,实现序列图像中关节角度跟踪。本系统搭载TG-2升空,对SZ-11航天员的任务视频进行了采集和处理,首次获取了在轨航天员的姿态(包括中性体位)、占位空间、运动参数等重要数据。结果表明,运动捕捉的模型与点云具有良好的重合度,关节点位置与关节角度具有较高的跟踪精度。SpaceMocap是我国首个在轨运动捕捉系统,它小型、轻质,具有计算机视觉特有的非接触测量、直观、高精度优势,无需在人体上粘贴任何标志,具有良好的抗遮挡能力,完全适用于微重力、狭小空间环境下的在轨应用 。  相似文献   

7.
为了对环月摄影测量的精度有一个形象化的了解,依据探月卫星面阵CCD相机三维成像系统采用的正飞姿态和侧飞姿态的摄影测量方式及其立体重叠率的变化规律进行仿真,并制作相应的演示模型。通过研究、分析,验证采用CCD相机的立体摄影测量方案的技术可行性。  相似文献   

8.
通过对环月遥感立体影像构建可能被采纳的几种模式比较,从理论上分析卫星航高、立体构像基线、影像分辨率、平面测量精度、高程测量精度诸因素间的关系。提醒注意,当保持卫星高度,用指定面阵相机作正直摄影时,提高影像分辨率却不能提高高程量测精度的事实。提出了使用双相机倾斜摄影模式提高高程量测精度的建议。  相似文献   

9.
介绍了嫦娥二号卫星CCD立体相机的设计思想与结果、发射前检测与地面推扫成像试验.嫦娥二号卫星CCD立体相机仍采用与嫦娥一号相同的线阵推扫成像模式,但嫦娥二号卫星CCD立体相机的技术指标要求大幅度提高,主要表现为地元分辨率由嫦娥一号的120m提高为嫦娥二号在100km圆轨上优于7m与在100km/15km椭圆轨道近月弧段...  相似文献   

10.
The UN Office for Outer Space Affairs, through the IHY Secretariat and the United Nations Basic Space Science Initiative (UNBSSI), assists scientists and engineers world-wide to participate in the International Heliophysical Year (IHY) 2007. A major thrust of IHY/UNBSSI is to deploy arrays of small, inexpensive instruments such as magnetometers, radio telescopes, GPS receivers, all-sky cameras, etc. around the world to allow global measurements of ionospheric and heliospheric phenomena. The small instrument program is envisioned as a partnership between instrument providers and instrument hosts in developing nations, with the former providing the instruments, the host nation the manpower, facilities and operational support, typically at a local university. Funds are not available through IHY/UNBSSI to build the instruments; these must be obtained through the normal proposal channels. All instrument operational support for local scientists, facilities, data acquisition, etc. will be provided by the host nation. The IHY/UNBSSI can facilitate the deployment of several of these networks and existing databases and relevant software tools will be identified to promote space science activities in developing nations. Extensive data on space science have been accumulated by a number of space missions. Similarly, long-term databases are available from ground-based observations. These data can be utilized in ways different from those originally intended for understanding the heliophysical processes. This report provides an overview of IHY/UNBSSI, its achievements, future plans and outreach to the 192 member states of the United Nations.  相似文献   

11.
《Space Policy》2014,30(3):143-145
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to ‘endure’ the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.  相似文献   

12.
13.
为提升SRAM型FPGA电路块存储器和配置存储器抗单粒子翻转性能,本文提出一种脉冲屏蔽SRAM单元结构。该结构通过在标准的六管单元中加入延迟结构,增大单元对单粒子事件响应时间,实现对粒子入射产生的脉冲电流屏蔽作用。以64k SRAM作为验证电路进行单粒子翻转性能对比,电路的抗单粒子翻转阈值由采用标准六管单元的抗单粒子翻转阈值大于25 MeV·cm 2·mg -1 提升至大于45 MeV·cm 2·mg -1 ,加固单元面积较标准六管单元增大约21.3%。30万门级抗辐照FPGA电路通过脉冲屏蔽单元结合抗辐照SOI工艺实现,其抗辐照指标分别为:抗单粒子翻转阈值大于37.3 MeV·cm 2·mg -1 ,抗单粒子锁定阈值大于99.8 MeV·cm 2·mg -1 ,抗电离总剂量能力大于200 krad(Si)。  相似文献   

14.
为提高空间作战能力,根据敌方飞行器空间传感器CCD相机的工作特性,提出设计隐身轨迹的思想。介绍了运动伪装理论的基本原理,并将其应用到空间攻击任务场景;设定x方向控制加速度为已知常值,推导了C-W相对运动方程下的理想隐身规律。仿真结果表明,隐身轨迹设计可行;隐身有效性分析进一步得到,隐身轨迹只适合在隐身走廊内应用,超出该范围隐身失效。距离目标较近时,宜采取直接打击。  相似文献   

15.
交会对接最后逼近阶段CCD相机的测量方法   总被引:20,自引:2,他引:20  
林来兴  李灿 《宇航学报》1994,15(2):24-34
本文提出交会对接最后逼近阶段,在CCD相(及二极管阵列)任意安装条件下,测量追踪飞行器相对于目标飞行器位置和姿态的方位角法和成象法测量方案,及在采用单机和多机时的算法,并进行了分析比较。在采用单机时,精度很高,而采用双机或多机,算法简单,速度快。将两者结合起来,可以较好地解决该阶段的测量问题。  相似文献   

16.
Martin Machay 《Space Policy》2011,27(3):170-173
Czechoslovakia was the third nation to have a citizen in space when Vladimir Remek flew in 1978. It was present at the formulation of international space law principles and ran some space-related projects within Intercosmos. The Czech Republic reassumed this tradition after Czechoslovakia was dissolved in 1993. There are no special funds to support space R&D. Hence, participants must compete for R&D resources with companies from other areas of industry. This improves their competitiveness. Czech society is broadly interested in space-related activities. The graduate system structure reflects this. Not only can one study space-related courses at technical universities but international space law is an obligatory part of international public law courses in the Czech Republic. Strong support for space activities is mirrored in the institutional fragmentation of this sphere. Competences in space applications are distributed among some 20 institutions and organizations. This status harms the Czech potential in space activities and R&D. The Czech Republic became a member of ESA in 2008 but Czech companies have not taken advantage of the full potential of membership. Participation in international projects is very important for a small post-communist economy because economic growth is based on convergence towards developed countries, which may dissipate after 2020. Now is the right time to strengthen the primary research that will establish a strong foundation for innovation-based economic growth.  相似文献   

17.
Introduction: This joint US–Russian work aims to establish a methodology for assessing cardiac function in microgravity in association with manipulation of central circulating volume. Russian Braslet-M (Braslet) occlusion cuffs were used to temporarily increase the volume of blood in the lower extremities, effectively reducing the volume in central circulation. The methodology was tested at the International Space Station (ISS) to assess the volume status of crewmembers by evaluating the responses to application and release of the cuffs, as well as to modified Valsalva and Mueller maneuvers. This case study examines the use of tissue Doppler (TD) of the right ventricular (RV) free wall. Results: Baseline TD of the RV free wall without Braslet showed early diastolic E′ (16 cm/s), late diastolic A′ (14 cm/s), and systolic S′ (12 cm/s) velocities comparable with those in normal subjects on Earth. Braslet application caused 50% decrease of E′ (8 cm/s), 45% increase of A′, and no change to S′. Approximately 8 beats after the Braslet release, TD showed E′ of 8 cm/s, A′ of 12 cm/s, and S′ of 13 cm/s. At this point after release, E′ did not recover to baseline values while l A′ and S′ did recover. The pre-systolic cross-sectional area of the internal jugular vein without Braslet was 1.07 cm2, and 1.13 cm2 10 min after the Braslet was applied. The respective cross-sectional areas of the femoral vein were 0.50 and 0.54 cm2. The RV myocardial performance Tei index was calculated by dividing the sum of the isovolumic contraction time and isovolumic relaxation time by the ejection time ((IVCT+IVRT)/ET); baseline and Braslet-on values for Tei index were 0.25 and 0.22, respectively. Braslet Tei indices are within normal ranges found in healthy terrestrial subjects and temporarily become greater than 0.4 during the dynamic Braslet release portion of the study. Conclusions: TD modality was successfully implemented in space flight for the first time. TD of RV revealed that the Braslet influenced cardiac preload and that fluid was sequestered in the lower extremity interstitial and vascular space after only 10 min of application. This report demonstrates that Braslet application has an effect on RV physiology in long-duration space flight based on TD, and that this effect is in part due to venous hemodynamics.  相似文献   

18.
《Acta Astronautica》2010,66(11-12):1804-1812
The Space Systems Research Laboratory (SSRL) at Saint Louis University is developing SLUCUBE nanosatellite as part of the space mission design program. The objective of the mission is to demonstrate space capability of high performance nanosatellite components that has been developed at SSRL for the past three years. The objective of the program is to provide extremely low-cost and rapid access to space for scientists and commercial exploitation using commercial-off-the-shelf components. SLUCUBE is a double CubeSat with dimensions 10×10×20 cm and a mass of 2 kg. This nanosatellite features suite of technology demonstration components to enlarge the capability of space mission for such class of spacecrafts. The primary mission of SLUCUBE is to test and demonstrate several enabling technologies by flying a number of university developed high performance components. This paper describes the new developed technologies by providing details of specific components developed along with the R&D efforts and laboratory facilities. A brief discussion about the student involvement and educational benefits will also be presented.  相似文献   

19.
Sanjay Jayaram   《Acta Astronautica》2009,65(11-12):1804-1812
The Space Systems Research Laboratory (SSRL) at Saint Louis University is developing SLUCUBE nanosatellite as part of the space mission design program. The objective of the mission is to demonstrate space capability of high performance nanosatellite components that has been developed at SSRL for the past three years. The objective of the program is to provide extremely low-cost and rapid access to space for scientists and commercial exploitation using commercial-off-the-shelf components. SLUCUBE is a double CubeSat with dimensions 10×10×20 cm and a mass of 2 kg. This nanosatellite features suite of technology demonstration components to enlarge the capability of space mission for such class of spacecrafts. The primary mission of SLUCUBE is to test and demonstrate several enabling technologies by flying a number of university developed high performance components. This paper describes the new developed technologies by providing details of specific components developed along with the R&D efforts and laboratory facilities. A brief discussion about the student involvement and educational benefits will also be presented.  相似文献   

20.
杂散光是影响卫星光学遥感图像像质的重要因素,严重时会在图像上形成明暗的杂散光条纹噪声,降低图像的对比度和清晰度。文章针对“实践九号”A(SJ-9A)卫星光学遥感图像存在的杂散光噪声现象,设计了一种基于成像载荷焦面入射杂散光空间分布特征的遥感图像杂散光条纹噪声去除方法,通过测量杂散光在推扫遥感图像上的空间分布特征,建立杂散光分布特征模型,采用分块自适应算法进行杂散光噪声滤波,消除SJ-9A遥感图像上随时空变化的杂散光条纹噪声。杂散光噪声去除后图像整体色调均匀,无条带噪声,满足CCD/TDI-CCD推扫遥感图像辐射校正精度(广义噪声)优于5%的指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号