首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
"Quenched Carbonaceous Composites (QCCs)" are carbonaceous interstellar dust analogues synthesized in the laboratory from a hydrocarbon plasma. We produced new types of carbonaceous condensates from the ejecta of plasma with mixtures of methane and hydrogen as source gases. We find that QCC with an absorbance peak at 220 nm is composed of onion-like spherules, and QCCs with an absorbance peak at 230-240 nm are composed of polyhedral particles. The onion-like QCC contains aromatic hydrogen bonds, and it shows the 3.3 and 11.4 micrometers absorption bands. The QCC with an absorbance peak at 230-240 nm is composed of ribbons with bent graphitic layers. This suggests that the carrier of the interstellar 220 nm extinction band might also be an emitter of the interstellar diffuse emission bands.  相似文献   

2.
PAHs (polycyclic aromatic hydrocarbons) are probably present as a mixture of neutral and ionized species and are responsible for the set of infrared emission bands in the 2-15 microns regions, which are observed in many different objects like reflection and planetary nebulae and external galaxies. PAHs are suggested to be the most abundant free organic molecules and ubiquitous in space. PAHs might also exist in the solid phase, included in interstellar ices in dense clouds. A complex aromatic network is expected on interstellar grains in the diffuse interstellar medium. The existence of an aromatic kerogen-like structure in carbonaceous meteorites and its similarity with interstellar spectra suggests a link between interstellar matter and primitive Solar System bodies.  相似文献   

3.
Interstellar dust grains are illuminated in the reflection nebulae. Under conditions of the PAH size and the intensity of the interstellar radiation field, we follow their impact on the PAH aromatic infrared bands using the numerical DustEM code. For a dust model consisting of PAH, amorphous C and amorphous silicate, the PAH size varies in a range from 0.31 to 4.9 nm while the radiation intensity varies by a scale factor from 0.1 to 104. Various trends of the results show the effect of varying both the PAH size and the radiation intensity on the strength of the aromatic mid-IR bands. Through small PAH sizes less than 0.7 nm, the grain temperature distribution of PAHs shows a small variation within 2–3 K at low radiation intensity while it increases to 15 and 8 K for PAH0 and PAH+, respectively, at higher radiation intensity. In final the variability in these results reveals the evolution of the dust grains under the physical space conditions of the reflection nebulae. In the mid-IR region, the contributions of PAH0 and PAH+ in the total SED intensity agree with the proportions of these PAHs observed in some reflection nebulae having higher radiation intensities.  相似文献   

4.
After subtracting the intense dust-scattered continuum from the original spectra transmitted by the Vega 2 three-channel spectrometer, a broad-band emission emerges in the 342-375 nm spectral range when the cometocentric projected distance p is smaller than 5000 km. This newly detected emission varies as p-1, which implies that the involved molecule(s) has a parent-type behavior. The emission band presents four peaks at 347, 356, 364 and 373 nm. It is tentatively identified as being due to phenanthrene, a three-cycle aromatic condensed hydrocarbon. A determination of the gQ product, where g is the fluorescence quantum efficiency and Q the production rate gives gQ = 1.2 x 10(25). If g = 0.012, it comes Q = 1 x 10(27) s-1. The detection of phenanthrene in Halley's inner coma is an important argument in favor of a similarity of composition between cometary material and interstellar matter. It supports the hypothesis that comets have kept trace of the interstellar composition through the solar system formation epoch.  相似文献   

5.
The principal observational properties of silicate core-organic refractory mantle interstellar dust grains in the infrared at 3.4 microns and at 10 microns and 20 microns are discussed in terms of the cyclic evolution of particles forming in stellar atmospheres and undergoing subsequent accretion, photoprocessing and destruction (erosion). Laboratory plus space emulation of the photoprocessing of laboratory analog ices and refractories are discussed. The aggregated interstellar dust model of comets is summarized. The same properties required to explain the temperature and infrared properties of comet coma dust are shown to be needed to account for the infrared silicate and continuum emission of the beta Pictoris disk as produced by a cloud of comets orbiting the star.  相似文献   

6.
We have produced thin films of quenched carbonaceous composite (QCC) by hydrocarbon plasma deposition. The effect of thermal annealing on QCC has been investigated to understand how QCC, as a laboratory analog of carbon dust, is transformed in the warm environment around evolved stars. Spectroscopic measurements have indicated that, by heating, the proportion of aromatic sp2 CH bonds increases relative to sp3 CH bonds. Carbon onion-like spherules of approximately 10 nm in diameter are found with electron microscopic images after "graphitization" of thermal annealing.  相似文献   

7.
Advanced space-borne thermal emission and reflection radiometer (ASTER) data were evaluated for the hydrothermal alteration mapping of the Nimu porphyry copper deposit, southern Tibet. According to the metallogenic model for porphyry copper, we chose hydrothermal alteration mineral association and then established a remote sensing model. Relative absorption-band depth (RBD) and simple band combination methods in visible near infrared (VNIR) and shortwave infrared (SWIR) bands were used to retrieve information about lithological distributions. Principal component analyses (PCA) were applied to extract the prospecting information based on the spectral information of argillization mineral association, propylitization mineral association, and iron stained (limonite) effects. Results of the study match up well with known copper occurrences and a circular structure in study area, while circular structures usually have close relationship with mineralization. Combined with field validation, ASTER data are proved able to characterise the alteration zone of these porphyry deposits. With VNIR and SWIR bands, argillic, propylitic and ferritization alterations in a single deposit can be effectively discriminated.  相似文献   

8.
9.
Pulsar wind nebulae are now well-established as important probes both of neutron stars’ relativistic winds and of the surrounding interstellar medium. Amongst this diverse group of objects, pulsar bow shocks have long been regarded as an oddity, only seen around a handful of rapidly moving neutron stars. However, recent efforts at optical, radio and X-ray wavelengths have identified many new pulsar bow shocks, and these results have consequently motivated renewed theoretical efforts to model these systems. Here, I review the new results and ideas which have emerged on these spectacular systems, and explain how bow shocks and “Crab-like” nebulae now form a consistent picture within our understanding of pulsar winds.  相似文献   

10.
Neutral naphthalene (C10H8), phenanthrene (C14H10), and pyrene (C16H10) absorb strongly in the ultraviolet and may contribute to the extinction curve. High abundances are required to produce detectable structures. The cations of these PAHs absorb in the visible. C10H8+ has 12 discrete absorption bands which fall between 6800 and 5000 angstroms. The strongest band at 6741 angstroms falls close to the weak 6742 angstroms diffuse interstellar band (DIB). Five other weaker bands also match DIBs. The possibility that C10H8+ is responsible for some of the DIBs can be tested by searching for new DIBs at 6520, 6151, and 5965 angstroms, other moderately strong naphthalene cation band positions. If C10H8+ is indeed responsible for the 6742 angstroms feature, it accounts for 0.3% of the cosmic carbon. The spectrum of C16H10+ is dominated by a strong band at 4435 angstroms in an Ar matrix and 4395 angstroms in a Ne matrix, a position which falls very close to the strongest DIB, that at 4430 angstroms. If C16H10+, or a closely related pyrene-like ion is indeed responsible for the 4430 angstroms feature, it accounts for 0.2% of the cosmic carbon. We also report an intense, very broad UV-to-visible continuum which is associated with both ions and could explain how PAHs convert interstellar UV and visible radiation into IR.  相似文献   

11.
W50 remains the only supernova remnant (SNR) confirmed to harbor a microquasar: the powerful enigmatic source SS 433. Our past study of this fascinating SNR revealed two X-ray lobes distorting the radio shell as well as non-thermal X-rays at the site of interaction between the SS 433 eastern jet and the eastern lobe of W50. In this paper we present the results of a 75 ks Chandra ACIS-I observation of the peak of W50-west targeted to: (1) determine the nature of the X-ray emission and (2) correlate the X-ray emission with that in the radio and infrared domains. We have confirmed that at the site of interaction between the western jet of SS 433 and dense interstellar gas the X-ray emission is non-thermal in nature. The helical pattern observed in radio is also seen with Chandra. No correlation was found between the infrared and X-ray emission.  相似文献   

12.
Studies to characterize optical and biological properties of land cover as observed from space are planned using a six channel, imaging spectroradiometer employing newly developed multispectral linear array (MLA) detector technology. These studies are to take place by mounting the radiometer on the Shuttle and observing areas with dynamic and diverse types of land cover condition. The radiometer will have 15 meter spatial resolution for four, 20 nanometer bands in the visible and near infrared and 30 meter resolution for similarily narrow bands in the shortwave infrared bands. The instrument will scan ± 45 degrees along the Shuttle orbital path. The principle objective of this experiment is to obtain observations that augment knowledge of the distribution of basic land cover types in regions that are known to be key to questions of biogeochemical cycles, energy balance and climatic change. Another key objective is to quantify the bidirectional reflectance of key land cover conditions in major portions of the visible, near infrared and shortwave infrared as they are observed from space. The initial execution of this experiment is presently scheduled for late 1987.  相似文献   

13.
Interstellar dust models, previously constrained only from the extinction curve, have been radically changed with the arrival of IRAS observations of the dust infrared emission. An important component of interstellar dust is likely to be made of small particles that show a fluctuating temperature upon impinging single photons and which can produce large near and mid infrared excesses ubiquitously observed in the Galaxy and external galaxies. The analysis of COBE data should soon improve our understanding of dust infrared emissivity and particularly for big grains in the submillimeter domain. We will discuss the key observations (spectral features, broad-band colors, correlations with gas tracers…) which put the best constraints on any dust models and show that the next generation of IR/submm satellites (ISO, SIRTF…) should improve our knowledge of interstellar dust composition and the dust redistribution of the stellar energy inside galaxies.  相似文献   

14.
CH4, CO, and CO2 are all potential one-carbon molecular repositories in primitive icy objects. These molecules are all found in the Comet Halley coma, and are probable but, (except for CH4 detected on Triton and Pluto) undetected subsurface constituents in icy outer solar system objects. We have investigated the effects of charged particle irradiation by cold plasma discharge upon surfaces of H2O:CH4 clathrate having a 200:1 ratio, as well as upon ices composed of H2O plus C2H6 or C2H2 (sometimes plus NH3) which are also plausible constituents. These materials color and darken noticeably after a dose 10(9) - 10(10) erg cm-2, which is deposited rapidly (< or = 10(4) yr.) in solar system environments. The chromophore is a yellowish to tan organic material (a tholin) which we have studied by UV-VIS reflection and transmission, and IR transmission spectroscopy. Its yield, -1 C keV-1, implies substantial production of organic solids by the action of cosmic rays and radionuclides in cometary crusts and interiors, as well as rapid production in satellite surfaces. This material shows alkane bands which Chyba and Sagan have shown to well match the Halley infrared emission spectrum near 3.4 microns, and also bands due to aldehyde, alcohol and perhaps alkene/aromatic functional groups. We compare the IR spectral properties of these tholins with the spectra of others produced by irradiation of gases and ices containing simple hydrocarbons.  相似文献   

15.
The 1985 International Solar Polar Mission will provide the first opportunity to perform measurements from out of the ecliptic and from above the solar poles. Included in this mission is the Zodiacal Light/Background Starlight Experiment of the Ruhr-University Bochum, FRG (in collaboration with the State University of New York at Albany). The experiment is based on the use of a multicolor, sky-scanning photopolarimeter, which will be carried on the NASA S/C.The scientific objectives of the experiment are to investigate the intensity, polarization, and color of the diffuse sky brightness and determine the spatial distribution and physical properties of the interplanetary dust, including a possible interstellar component, as a function of S/C position in and out of the ecliptic.The instrument will allow simultaneous measurements in two separate wavelength bands. Measurements will be performed at 180, 220, 240, 280, 320, 350, 360, 440, 540, 640, 800 nm, including the state of polarization. Two different fields-of-view (1 sq deg and 5.6 sq deg) can be selected.The use of a microprocessor system in the instrument electronics will provide flexibility in measurement sequences and programs, on-board data processing and data quality control.  相似文献   

16.
With the recent advances in all-sky imaging technology for nightglow emission studies, the F-region OI 630 nm emission has become an important tool for ionospheric/thermospheric coupling studies. At equatorial and low latitude regions, the all-sky imaging observations of the OI 630 nm emission show quasi north-south aligned intensity depletion bands, which are the optical signatures of large scale F-region plasma irregularities. By observing the motion of the intensity depleted bands it is possible to infer the ionospheric plasma zonal velocity of the depletion. The north-south aligned structures seen in the field of view of the all-sky imaging system corotate with the ionospheric plasma, so that by calculating the spatial displacements occurring during successive OI 630 nm emission images we can infer the ionospheric plasma drift velocity. However, the plasma bubbles have their own internal space-time dynamics leading to changes in their shape and dimensions and this may induce some errors in the calculated drift velocities. In this paper we take into account the space-time changes in the plasma bubbles in order to calculate the ionospheric plasma zonal drift velocities using the OI 630 nm nightglow emission.  相似文献   

17.
Remote sensing satellite data plays a vital role and capable in detecting minerals and discriminating rock types for explorations of mineral resources and geological studies. Study of spectral absorption characters of remotely sensed data are under consideration by the exploration and mining companies, and demonstrating the spectral absorption characters of carbonates on the cost-effective multispectral image (rather than the hyperspectral, Lidar image) for easy understanding of all geologists and exploration communities of carbonates is very much important. The present work is an integrated study and an outcome of recently published works on the economic important carbonate rocks, includes limestone, marl, listwaenites and carbonatites occurred in parts of the Sultanate of Oman. It demonstrates the spectral sensitivity of such rocks for simple interpretation over satellite data and describes and distinguishes them based on the absorptions of carbonate minerals in the spectral bands of advanced spaceborne thermal emission and reflection radiometer (ASTER) for mapping and exploration studies. The study results that the ASTER spectral band 8 discriminates the carbonate rocks due to the presence of predominantly occurred carbonate minerals; the ASTER band 5 distinguishes the limestones and marls (more hydroxyl clay minerals) from listwaenite (hydrothermally altered rock) due to the presence of altered minerals and the ASTER band 4 detects carbonatites (ultramafic intrusive alkaline rocks) which contain relatively more silicates. The study on the intensity of the total absorptions against the reflections of these rocks shows that the limestones and marls have low intensity in absorptions (and high reflection values) due to the presence of carbonate minerals (calcite and dolomite) occurred in different proportions. The listwaenites and carbonatites have high intensity of absorptions (low reflection values) due to the occurrence of Mn-oxide in listwaenites and carbonates in carbonatites apart the influence of major carbonate minerals that occurred predominantly in these rocks. The study of ASTER thermal infrared (TIR) spectral bands distinguished the marls have low emissivity of energy due to the presence of hydroxyl bearing alumina-silicate minerals from the other rocks such as limestones, listwaenites and carbonatites which have high emissivity due to the absence of hydroxyl bearing alumina-silicate minerals and the presence of carbonate minerals and carbonates.  相似文献   

18.
In Laboratory Astrophysics at Leiden University a laboratory analog for following the chemical evolution of interstellar dust in space shows that the dust contains the bulk of organic material in the universe. We follow the photoprocessing of low temperature (10 K) mixtures of ices subjected to vacuum ultraviolet radiation in simulation of interstellar conditions. The most important, but necessary, difference is in the time scales for photo-processing. One hour in the laboratory is equivalent to one thousand years in low density regions of space and as much as, or greater than, ten thousand to one million years in the depths of dense molecular clouds. The ultimate product of photoprocessing of grain material in the laboratory is a complex nonvolatile residue which is yellow in color and soluble in water and methanol. The molecular weight is greater than the mid-hundreds. The infrared absorption spectra indicate the presence of carboxylic acid and amino groups resembling those of other molecules of presumably prebiological significance produced by more classical methods. One of our residues, when subjected to high resolution mass spectroscopy gave a mass of 82 corresponding to C4H6H2 after release of CO2 and trace ammounts of urea suggesting amino pyroline rings. The deposit of prebiotic dust molecules occurred as many as 5 times in the first 500-700 million years on a primitive Earth by accretion during the passage of the solar system through a dense interstellar cloud. The deposition rate during each passage is estimated to be between 10(9) and 10(10) g per year during the million or so years of each passage; i.e., a total deposition of 1O(9)-10(10) metric tons of complex organic material per passage.  相似文献   

19.
Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System CELSS type crops. Lettuce (Lactuca [correction of Latuca] Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.  相似文献   

20.
The irradiation of grains and/or ices by particles from solar or stellar winds, as well as cosmic rays, induces the synthesis of molecular species. We have shown by in-situ infrared spectroscopy of irradiated samples that this chemistry may be responsible for the presence of organic compounds in a large variety of astrophysical sites such as: lunar and asteroidal regoliths, cometary nucleus, rings and satellites of outer planets, circumstellar shells, interstellar clouds. We present our experimental results concerning the nature and efficiency of C and N irradiation chemistries, and give plausible astrophysical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号