首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common but troublesome requirement on radar sensors is the detection of a target in the interference from undesired scatterers, or clutter. Systems with coherent processing of pulse trains are uniquely suited for the purpose because, with pulse trains, it is possible to concentrate the receiver output for particular values of Doppler and thus suppress the clutter by Doppler filtering. This paper discusses to what degree the effectiveness of the method can be enhanced by tapering, or weighting, of the pulse amplitudes. The general results are illustrated by computer-plotted response functions for weighted pulse trains. The clutter suppression efficiency of weighting is calculated both for unilateral weighting in the receiver and for bilateral weighting in both receiver and transmitter. The significance of additional phase weighting is discussed and the results for pure amplitude weighting are compared with publishedwork on phase and amplitude weighting.  相似文献   

2.
MTI Weightings     
A comparison is made between optimum weighting, which maximizes Pd for a given ?, and several MTI weightings. It is shown that a special case of the optimal weighting is approximately equal to the MTI weighting which maximizes the MTI improvement factor.  相似文献   

3.
Uniform coherent pulse trains offer a practical solution to the problem of designing a radar signal possessing both high range and range-rate resolution. The Doppler sensitivity provides some rejection of off-Doppler (clutter) returns in the matched filter receiver. This paper considers the use of a processor in which members of the received pulse train are selectively weighted in amplitude and phase to improve clutter suppression. The techniques described are particularly suitable for rejecting interference entering the processor through ambiguous responses (range sidelobes) of the signal. The complex weights which are derived are optimum in the sense that they produce the maximum clutter suppression for a given detection efficiency. In determining these weights, it is assumed that the distribution of clutter in range and range rate relative to targets of interest is known. Thus, clutter suppression is achieved by reducing the sidelobe levels in specified regions of the receiver response. These techniques are directly applicable to array antennas; the analogous antenna problem would be to reduce sidelobe levels in a particular sector while preserving gain. Complex weighting is most successful when the clutter is limited in both range and velocity.  相似文献   

4.
Doppler processors are used in radar to separate target returns from clutter. When the clutter is at a range farther than the unambiguous range of the radar, the ability to reject the clutter is degraded. In this article the degradation is analyzed for an N-pulse batch processor with Dolph weighting, and the results show how degradation varies with design sidelobe level.  相似文献   

5.
Analysis of CFAR performance in Weibull clutter   总被引:2,自引:0,他引:2  
Recent interest has focused on order statistic-based (OS-based) algorithms for calculating radar detection thresholds. Previous analyses of these algorithms are extended, to determine closed-form approximations for the signal-to-clutter ratio required to achieve a particular probability of detection in clutter environments whose amplitude statistics are modeled by the Weibull distribution, and where the clutter dominates receiver noise. Performance is evaluated in both homogeneous and inhomogenous clutter. The analysis shows that the OS-based algorithm is quite robust against both interference and clutter edges. A method is suggested for improving performance at clutter inhomogeneities for short-range targets  相似文献   

6.
Generalized radar clutter model   总被引:2,自引:0,他引:2  
A commonly used density model for radar clutter is chi-square for power, or, equivalently, Rayleigh for amplitude. However, for many modern high resolution radar systems, this density underestimates the tails of the measured clutter density. Log normal and Weibull distributions have proved to be better suited for the clutter in these high resolution radars. Generalizing the chi-square density by replacing it with the noncentral chi-square density and allowing the mean power level (the noncentrality parameter) to vary, we can both suitably shape the clutter density to produce larger tails and model the fluctuation of the average clutter power, commonly referred to as speckle. The resulting form, although appearing cumbersome, readily allows for efficient and accurate computations of the probability of detection in clutter  相似文献   

7.
The problem of designing optimum weighting functions subject to peak amplitude and effective radiated voltage constraints occurs in the design of active phased arrays and in spectrum control of high-pulse-repetition frequency (PRF) pulsed Doppler transmitters. Algorithms for generating such weighting functions are developed using a least-squares technique. Numerical results are presented which show that these algorithms yield substantial performance improvement over textbook weighting functions in favorable circumstances.  相似文献   

8.
The resolution properties and clutter performance of a simultaneous Doppler and acceleration measurement are investigated in detail with particular emphasis given to coherent pulse trains. The analysis is based on the concept of a matched-filter receiver, although receiver weighting of the type that reduces Doppler sidelobes is also analyzed in detail. Near the main lobe of the acceleration response is a pedestal-ike sidelobe region, the height of which is about 1/N of the main response lobe power where N is the number of pulses in the train. The extent of this pedestal along the acceleration axis is proportional to N. The acceleration measurement in a clutter environment is best performed when both targets and clutter are confined to this pedestal region, since some response sidelobes outside of this region are extremely large.  相似文献   

9.
A novel target detection approach based on adaptive radar waveform design   总被引:2,自引:2,他引:0  
To resolve problems of complicated clutter, fast-varying scenes, and low signal-clutterratio (SCR) in application of target detection on sea for space-based radar (SBR), a target detection approach based on adaptive waveform design is proposed in this paper. Firstly, complicated sea clutter is modeled as compound Gaussian process, and a target is modeled as some scatterers with Gaussian reflectivity. Secondly, every dwell duration of radar is divided into several sub-dwells. Regular linear frequency modulated pulses are transmitted at Sub-dwell 1, and the received signal at this sub-dwell is used to estimate clutter covariance matrices and pre-detection. Estimated matrices are updated at every following sub-dwell by multiple particle filtering to cope with fast-varying clutter scenes of SBR. Furthermore, waveform of every following sub-dwell is designed adaptively according to mean square optimization technique. Finally, principal component analysis and generalized likelihood ratio test is used for mitigation of colored interference and property of constant false alarm rate, respectively. Simulation results show that, considering configuration of SBR and condition of complicated clutter, 9 dB is reduced for SCR which reliable detection requires by this target detection approach. Therefore, the work in this paper can markedly improve radar detection performance for weak targets.  相似文献   

10.
Radar CFAR Thresholding in Clutter and Multiple Target Situations   总被引:9,自引:0,他引:9  
Radar detection procedures involve the comparison of the received signal amplitude to a threshold. In order to obtain a constant false-alarm rate (CFAR), an adaptive threshold must be applied reflecting the local clutter situation. The cell averaging approach, for example, is an adaptive procedure. A CFAR method is discussed using as the CFAR threshold one single value selected from the so-called ordered statistic (this method is fundamentally different from a rank statistic). This procedure has some advantages over cell averaging CFAR, especially in cases where more than one target is present within the reference window on which estimation of the local clutter situation is based, or where this reference window is crossing clutter edges.  相似文献   

11.
基于Ku波段高分辨大入射余角(擦地角)海杂波数据,采用瑞利分布、韦布尔分布、对数正态分布、K分布和KK分布进行仿真,并与实测数据对比,分析了这些分布方式的拟合效果。结果表明,海杂波的幅度在大入射余角情况下基本还是逼近瑞利分布的,海杂波在某些距离单元上的幅度分布曲线尾部偏离瑞利分布,此时K和KK分布可在拖尾处达到更好的拟合效果。  相似文献   

12.
In a recent paper, general expressions were derived for the density and cumulative probability functions of the amplitude of a linear matched-filter output given a nonfluctuating target in a clutter-limited environment. These expressions were based on the clutter amplitude density function. The results are extended to calculate the cumulative probability function of the output of a linear matched filter used to detect a chi-square fluctuating target in a clutter-limited environment. The resulting method is applied to a common radar clutter model, and experimental sonar data.  相似文献   

13.
The problem of detecting radar targets against a background of coherent, correlated, non-Gaussian clutter is studied with a two-step procedure. In the first step, the structure of the amplitude and the multivariate probability density functions (pdfs) describing the statistical properties of the clutter is derived. The starting point for this derivation is the basic scattering problem, and the statistics are obtained from an extension of the central limit theorem (CLT). This extension leads to modeling the clutter amplitude statistics by a mixture of Rayleigh distributions. The end product of the first step is a multidimensional pdf in the form of a Gaussian mixture, which is then used in step 2. The aim of step 2 is to derive both the optimal and a suboptimal detection structure for detecting radar targets in this type of clutter. Some performance results for the new detection processor are also given  相似文献   

14.
The use of the discrete Fourier transform (DFT) to enhance the detection of moving targets in ground clutter is examined. The improvement factor, defined as the signal-to-clutter ratio at the DFT processor output compared with that of the input, is given as a function of normalized clutter spectral width for various weighting functions on the DFT input. The effect of quantization of the weights on the improvement factor is also examined.  相似文献   

15.
We propose a model for generating low-frequency synthetic aperture radar (SAR) clutter that relates model parameters to physical characteristics of the scene. The model includes both distributed scattering and large-amplitude discrete clutter responses. The model also incorporates the SAR imaging process, which introduces correlation among image pixels. The model may be used to generate synthetic clutter for a range of environmental operating conditions for use in target detection performance evaluation of the radar and automatic target detection/recognition algorithms. We derive a statistical representation of the proposed clutter model's pixel amplitudes and compare with measured data from the CARABAS-II SAR. Simulated clutter images capture the structure and amplitude responses seen in the measured data. A statistical analysis shows an order of magnitude improvement in model fit error compared with standard maximum-likelihood (ML) density fitting methods.  相似文献   

16.
The fundamentals of fractal geometry are reviewed, and its application to the millimeter-wave radar detection of stationary targets in a clutter background is described. First, high-range-resolution (HRR) profiles are used to determine the fractal interpolation functions needed to create fractal signatures. The fractal dimension is then determined for these signatures. On the basis of the value of the fractal dimension, the signature is declared to represent either a target of interest or clutter. The results of a CFAR (constant false alarm rate) simulation are presented to illustrate the performance of the method. They indicate that the fractal dimension feature used seems to be independent of amplitude. Thus, the fractal dimension information combined with traditional amplitude processing techniques will improve probabilities of detection  相似文献   

17.
This paper presents the output waveform of a correlation techniquewhich incorporates time domain amplitude weighting and matchedfiltering. This scheme may be used in pulse compression radars wherefine target detail is desired over an increment of range, the rangewindow. Analytic expressions describing the amplitude, phase, andfrequency modulation of the output waveform are obtained for thecosine-squared weighted spectrum, truncated Taylor weighted spectrum,and cosine-cubed weighted spectrum with weighting mismatchas a parameter. The effects of such mismatches on the amplitude,phase, and frequency modulation of the compressed waveform areplotted. However, the methods used to obtain these results are generalenough to obtain output waveforms of other weighting functions similarlymismatched.  相似文献   

18.
江军  张本栋  王凯  李文源  张潮海 《航空学报》2020,41(9):323889-323889
为满足多电飞机(MEA)的大功率用电需求,系统工作电压需要进一步提高,而较高电压会增加相关部件的绝缘失效风险。面向多电飞机特定工作场景和参数,搭建了模拟飞机电作动器中的绕组间绝缘故障测试平台,开展了1 kHz范围内的局部放电(PD)大量重复实验,研究了特定电压幅值、正弦波和方波脉冲波形下局部放电幅值、放电重复率和放电相位等统计特征,并计算评估了不同频率值下多电飞机中的局部放电行为。实验结果表明:在设定频域范围内,方波脉冲下的起始放电电压(PDIV)都低于正弦,方波脉冲波形对绝缘影响更大;随着频率升高,放电幅值逐渐降低,但放电重复率几乎呈线性增长;放电时刻集中于上升沿/下降沿末端。以50 Hz作为对比基准频率,1 kHz时的放电幅值降低80%,而放电重复率增加11.92倍,较高频率下多次累积的小幅值击穿成为威胁绝缘失效的主要原因。计算分析认为高频下空间电荷场强变化导致的放电延迟时间减少和周期数目增加分别导致局部放电脉冲幅值降低和放电重复率增加。本实验结果有助于针对多电飞机电气系统和相关装备开展针对性绝缘测试和评估,并有望为多电飞机向大功率高电压方向的设计提供参考和借鉴。  相似文献   

19.
Matched subspace CFAR detection of hovering helicopters   总被引:4,自引:0,他引:4  
A constant false alarm rate (CFAR) strategy for detecting a Gaussian distributed random signal against correlated non-Gaussian clutter is developed. The proposed algorithm is based on Scharf's matched subspace detector (MSD) and has the CFAR property with respect to the clutter amplitude probability density function (apdf), provided that the clutter distribution belongs to the compound-Gaussian family and the clutter covariance matrix is known to within a scale factor. Analytical expressions of false alarm and detection probabilities are derived. An application to the problem of detecting hovering helicopters against vegetated ground clutter is reported  相似文献   

20.
In high-resolution imaging, weak target pixel amplifiers may not be detected in the presence of clutter containing strong nonhomogeneities, when conventional approaches are used. The authors describe a constant false alarm rate (CFAR) approach that avoids the elimination of these significant target returns. The nonhomogeneous clutter as well as the weak target components are detected with this approach. The targets could then be discriminated from the homogeneities by discrimination techniques. It is shown how the lower amplitude components of the background noise and homogeneous clutter (which have Rayleigh statistics) can be detected in the presence of strong homogeneous clutter and targets. The average level of the homogeneous component is then determined using these lower-amplitude components. This CFAR approach avoids having a CFAR on the strong nonhomogeneities as well as the homogeneous component. The avoidance is what yields the ability to detect weak target pixel amplitudes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号