首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior, in an oxygen atmosphere, of shocked drops of nitromethane, 1- and 2- nitropropane, ethyl and propyl nitrate, decane, and heptane was studied. Results suggest a new mode of ignition for nitrates at high incident shock Mach numbers (M 3.7). At the high incident shock strengths ignition occurs in the boundary layer, but no blast wave develops as is the case for lower shock strengths. Since ignition delay times are very short under these conditions, the absence of blast waves is attributed to the lack of time for the accumulation of fuel in the wake. Gas phase studies of the shock decomposition of fuel molecules were undertaken to determine if gas phase data could be used to explain the trends in the drop ignition observations. Nitromethane and the nitrates were mainly used in this effort. Alternative explanations for the role of gas phase kinetics in the ignition of drops are presented.  相似文献   

2.
A possibility of attaining steady flow of detonation products with specific energy much larger than the specific chemical energy of explosive is demonstrated in the case when a cylindrical charge of explosive is fitted with an evacuated cavity. Simple estimates and results of numerical analysis of the process are presented. Steady process may be considered to occur under the following assumptions: (1) effects arising due to jet interaction with cavity walls are negligible; (2) the detonation process is steady. In the case of limited explosive lengths these assumptions have been shown to be correct.When the cavity is filled with gas or liquid, a variety of steady and non-steady flow regimes is possible, depending on the density of the filling medium. One well-known case is that of flow with irregular reflection of shock waves at the cavity axis accompanied with the formation of Mach intersections. Another interesting flow regime is observed to occur in the case of low density filling medium (liquid hydrogen, for example). In this case the filling medium is driven by a “detonation piston” at constant velocity, equal to the velocity of detonation, forming a uniform growing column of hot shock-compressed matter, specific energy of which exceeds by one order of magnitude the specific energy of the explosive. Obviously, the walls of the vessel containing hydrogen must be able to withstand radial loads for a sufficiently long time (20 μ sec).The relative merits of these methods in comparison to others in high speed gas-dynamics is discussed.  相似文献   

3.
Boundary layer stripping of liquid drops fragmented by Taylor instability   总被引:1,自引:0,他引:1  
A model is presented to describe the breakup of large ( 1 mm diameter) liquid drops by shock waves such as occurs in the heterogeneous detonation of liquid fuel sprays. After passage of a shock, high speed gas flow is established about the drops with large Reynolds number, large Weber number and large ratio of Weber number to the square root of the Reynolds number. Under these conditions, a thin liquid boundary layer is formed in the windward surface of a drop and is stripped from the drop at its equator. The rate of mass loss from the drop is small initially, but is increased an order of magnitude by fragmentation of the original drop. This fragmentation occurs because of Taylor instability of the windward surface of the accelerating drop. Calculations based on boundary layer stripping, which include the increase in liquid surface area due to fragmentation, give mass loss rates in general agreement with experimental observations.  相似文献   

4.
Numerical solutions of the blast wave flow from a spherical explosive charge were obtained using the artificial viscosity technique as employed by Oppenheim. The flow is treated as adiabatic and inviscid and ideal equations of state are used for reactants, products and the surrounding air environment. Differences are noted in the peak pressure, static impulse and dynamic impulse resulting from three representative types of idealized initiation: (1) centrally initiated, self-similar Chapman-Jouguet detonation, (2) edge initiated spherical implosion and (3) constant volume energy release followed by sudden venting to the environment. These are compared to the ideal point blast with counterpressure of the same total energy release. In addition, numerical solutions are presented for centrally initiated, stoichiometric hydrogen-oxygen mixtures surrounded by air for detonation and for deflagration according to an empirically determined, non-steady flame velocity. The greater energy transfer to the environment in the case of detonation is demonstrated.  相似文献   

5.
A model for an elementary detonation cell is postulated. On its basis, the geometry of the cell pattern and the kinematics of the wave fronts forming the cells are evaluated. The cell size is determined assuming that the induction time obeys an Arrhenius relationship with temperature. Thus, it is shown that some kinetic parameters of the mixture, such as the activation energy, can be deduced from the cell size. It is also demonstrated that by combining the cell model with the experimental data on the propagation of the detonation wave in a rapidly expanding channel, the initiation energy for a cylindrical detonation wave can be estimated.  相似文献   

6.
Spherical detonations have been initiated by solid explosive (Tetryl) charges in well-mixed stoicheiometric air mixtures with each of the hydrocarbons, ethane, propane, n-butane, isobutane and ethylene at atmospheric pressure. Prior to initiation, the gases were contained in plastic bags; total gas volume and available path length were up to 1.6 m3 and 2 m, respectively. The detonations were shown to be self-sustained by continuous measurement of detonation velocity using X-band microwave interferometry. Measured detonation velocities were in all cases close to calculated C-J values.In a few experiments close to the limits of detonability, velocity and blast pressure/time records indicated that the propagating wave system is sometimes irregular. The irregularity that occurs just after initiation is characterised by a reaction front velocity very much lower than the constant detonation velocity, but subsequently attaining the latter by an acceleration process. These observations indicate the existence of a dissociated phase in which shock and reaction fronts may no longer be coupled.Because similar experimental conditions were used throughout, it was possible to establish the relative susceptibilities of the various fuel gases to detonation. Comparison is made with the Zeldovich criterion and a detonation kernel theory of Lee.  相似文献   

7.
This paper briefly describes two attempts to utilize detonative combustion processes to MHD conversion of thermal energy of fuel to electrical energy and bonding of atmospheric nitrogen. For this purpose a continuous impulse detonation chamber with a frequency up to 200 cps was constructed. Using methane-oxygen-nitrogen mixtures the chamber was maintained in stable operation for several hundred hours. Oil was also employed as fuel.Estimates based on experimental data showed that up to 2% of chemical energy of the fuel may be converted into electrical energy. The use of an accelerating nozzle may improve this result.The concentration of nitrogen oxide in combustion products of the detonation wave was higher by 14% than that expected under usual combustion conditions.The advantages of this type of apparatus are: absence of compressors for fuel and oxidant, impulse current generation, low temperatures of chamber walls, and operation over a large range of operating conditions.Problems associated with the effect of the magnetic field on the propagation of the detonation wave are discussed and the possibility of applying the Zeldovich theory to the case of MHD interaction is described. It is shown that the detonation velocity may either increase or decrease depending on the relative orientation of the direction of magnetic field with respect to the detonation wave.  相似文献   

8.
刘龙  夏智勋  黄利亚 《宇航学报》2018,39(3):239-248
针对在氧化性气相氛围以及在燃料/氧化剂混合气相氛围中粉末燃料爆震燃烧波的传播特性,总结了气相氛围中悬浮粉末燃料爆震燃烧的实验和数值模拟研究进展,归纳了影响爆震波速度、稳定性、传播模式、细观结构和胞格尺寸的主要因素。同时,还介绍了粉末燃料应用于爆震发动机或燃烧室的案例;结合粉末爆震自身特点对实验装置和燃烧诊断测试手段和数值模拟方法进行总结分析;最后针对下一步需要开展的研究工作进行展望 。  相似文献   

9.
Direct initiation of detonations in gaseous mixtures of C2H2-O2, H2-O2 and H2-Cl2 in the pressure range of 10–150 torr using flash photolysis was studied. Similar to blast initiation using a concentrated powerful energy source, it was found that for photochemical initiation, there exists a certain threshold of flash intensity and energy for each mixture at any given initial pressure and composition below which a deflagration is formed. At the critical threshold, however, a fully developed detonation is rapidly formed in the immediate vicinity of the window of incident UV radiation. However, at super critical flash energies, the amplitude of the detonation formed decreases and combustion of the entire irradiated volume approaches a constant volume explosion. It was found that photo-chemical initiation requires both a certain minimum peak value of the free radical concentration generated by the photo-dissociation as well as an appropriate gradient of this free radical distribution. The minimum peak radical concentration permits rapid reaction rates for the generation of strong pressure waves, while the gradient is necessary for the amplification of the shock waves to a detonation. If the gradient is absent and the free radicals are uniformly distributed in the mixture, then the entire volume simply explodes as in a constant volume process. The present study reveals that the mechanism of photochemical initiation is one of proper temporal synchronization of the chemical energy release to the shock wave as it propagates through the mixture. In analogy to the LASER, the term SWACER is introduced to represent this mechanism of Shock Wave Amplication by Coherent Energy Release. There are strong indications that this SWACER mechanism is universal and plays the main role in the formation of detonations whenever a powerful concentrated external source is not used to generate a strong shock wave in the explosive.  相似文献   

10.
Recent experimental studies with laser supported absorption waves, arising from intense laser radiation incident upon various surface materials, are discussed. The propagation characteristics of both subsonic (laser supported combustion), intensity about 105 W/cm2, and supersonic (laser supported detonation), intensity greater than 106 W/cm2, waves are described, including the dependence of wave speed on laser intensity, beam diameter, gas density and laser wave length. Measurements of the plasma properties in such waves are described, and the analysis of these data allows conclusions identifying the dominant transport mechanism in such waves. It is also concluded that in the LSC (subsonic) case, radial flow ahead of and within the wave are dominant features of the wave structure. The equipment and laser facilities used in the experiments are also discussed.  相似文献   

11.
In connection with the use of cryogenic liquids in high-speed gas dynamics and high-pressure physics, shock-wave processes in liquid hydrogen were investigated under plane, cylindrical and hemispherical loading.The plane loading of liquid hydrogen consisted of a multicyclic, nearly isentropic compression. A transducer employing a contact electrical effect was used to record this multicyclic compression process between a rigid wall and a flyer, resulting in a sequence of shock steps of decreasing amplitude, whose integrated action is equivalent to the isentropic compression of liquid hydrogen up to 500 kbar.The cylindrical loading was generated by detonating a high-explosive charge enclosing a cylindrical cavity along its axis that was filled with liquid hydrogen. Under these conditions shock velocities up to 13.7 km/sec were recorded, and pressure in the shock-compressed hydrogen reached 90 kbar. The formation of a boundary layer and expansion of the cylindrical cavity limited further pressure increases in the column of compressed liquid and lead to a decrease in the flow velocity. The observed increase in detonation velocity is associated with the influence of the channel wave on the detonation regime in the neighboring explosive layers.Under hemispherical loading, an increase in the converging shock velocity from 6 to 20 km/sec was recorded. The final pressure reached 210 kbar, and the total specific energy exceeded 200 kJ/g. During the release of the shock-compressed hydrogen into air at 0.1 torr, shock waves with velocities exceeding 50 km/sec were obtained.  相似文献   

12.
煤油温度对于爆震波形成影响的实验研究   总被引:1,自引:0,他引:1  
在内径为30mm的脉冲爆震发动机模型上,以煤油为燃料,以空气为氧化剂,成功地进行了两相爆震实验,获得了充分发展的脉冲爆震波。测试了在化学恰当比,不同爆震频率及燃油温度下的爆震波压力,并对其变化进行了分析。通过分析实验结果发现,在化学恰当比下,爆震频率不变时,煤油温度的升高明显促进了爆震的形成,在内径小于混合物胞格尺寸的爆震管内,可以形成充分发展的两相脉冲爆震波。  相似文献   

13.
Critical conditions for detonation failure due to tube expansion have been observed in marginal detonations propagating in a in. (6.35 × 76.2 mm) channel. In these experiments, a well established marginal detonation propagating in the narrow channel entered a test section in which one of the narrow walls was inclined to the central axis at positive angles which ranged from 10° to 45°. Experiments were performed at pressures ranging from 60 to 200 torr (8 to 26.7 kPa) in stoichiometric hydrogen-oxygen mixtures diluted with 20, 50 and 70% argon. Smoke track records obtained on the surface which is the major dimension of the tube, were used to determine failure, incipient failure or self-sustenance of the entering wave.Because of the narrow tube used in the studies the incident waves were marginal in that their velocity was below the expected CJ (Chapman-Jouguet) value, their transverse wave spacing was larger than one would see in a large tube, and the transverse waves were of greater strength than in an ordinary detonation. All of these indicators of marginal behavior became progressively more pronounced as the pressure dropped from 200 torr (26.7 kPa) to the limit pressure of approximately 58 torr (7.73 kPa).The most interesting result of this experimental investigation is that the theoretical analyses predicted that simple one-dimensional opening of the tube should not show a pressure dependence to failure, while the experiments showed a definite decrease in the opening angle required for failure as initial pressure decreased. This behavior is related to the marginality of the incident waves, which is observed to increase smoothly with decreased pressure. It is postulated that detonation failure in the hydrogen-oxygen system occurs when the shock velocity at the end of the cell drops to about 0.60 of the CJ value due either to marginal behavior or to an expansion of the cross section of the tube.  相似文献   

14.
For modeling the space dust and debris effect on flying vehicles, an investigation of the low-velocity impact of corundum and tungsten powders, accelerated by explosion, with particle size up to 50 microns on steel and duralumin targets was carried out. Also studied was the impact of sewing needles against metal and dielectric barriers, antimeteor shield models, and duralumin containers with hard materials, gunpowder, and explosives. At impact of powders at velocities of up to 2 km/s and needles at a velocity of up to 0.5 km/s against metals, the channels arose with lengths greater than 100 and 50 diameters of a striker. At impact of needles, the containers with hard explosive materials were destroyed because of ignition of their contents, and containers with plastic explosive were punched through, and no burning occurred. The energy, released at destruction of plexiglas blocks and containers with hard materials, many times exceeded the impact energy due to release of the elastic energy stored in them.  相似文献   

15.
H2/O2燃烧的超声速非平衡流动的数值模拟   总被引:5,自引:0,他引:5  
本文从包含组分方程的完全NS方程出发,采用NND格式和H2/O2燃烧模型,通过求解NS方程,模拟了具有压缩拐角的二维管道和球头两类激波点火、燃烧流动。计算清楚地给出了流场中的激波,爆震波以及各种物理量的分布,并分析了激波、爆震波及其相互之间的合。在此基础上,讨论了稀释剂添加情况对流场的影响。计算中为了解决耦合方程组的刚性,提高计算的稳定时间步长,对化学生成源项,妥善地采用了隐式处理技术。  相似文献   

16.
郭红杰  梁国柱  马彬 《宇航学报》2006,27(5):1068-1071,1112
爆震波点火器用于工程,其设计存在一个最佳结合点,使得在合适的管路中,爆震波传播速度、转捩距离、爆震波能量等能够符合点火器目标需求。为了研制适用于工程的爆震波点火器,在氢氧爆震波点火器基本特性试验的基础上,对初始混合气体的混合比等与爆震波特性的关系进行了研究。对实验结果进行分析认为。混合比对爆燃爆震转捩(DDT)距离影响较大,混合比大于3时,其转捩距离小于500mm。混合比增加时,爆震波传播速度会减小,但稳定的爆震波相对于波的混气的马赫数并小减小,维持在4.8左右。在初始混气压力不变情况下,质量流量可以提高爆震波能量,增强爆震波的点火能力。研究结论时爆震波点火器在工程中实际应用及以后的研究方向具有指导性作出。  相似文献   

17.
The present study examines the role of transverse waves and hydrodynamic instabilities mainly, Richtmyer–Meshkov instability (RMI) and Kelvin–Helmholtz instability (KHI) in detonation structure using two-dimensional high-resolution numerical simulations of Euler equations. To compare the numerical results with those of experiments, Navier–Stokes simulations are also performed by utilizing the effect of diffusion in highly irregular detonations. Results for both moderate and low activation energy mixtures reveal that upon collision of two triple points a pair of forward and backward facing jets is formed. As the jets spread, they undergo Richtmyer–Meshkov instability. The drastic growth of the forward jet found to have profound role in re-acceleration of the detonation wave at the end of a detonation cell cycle. For irregular detonations, the transverse waves found to have substantial role in propagation mechanism of such detonations. In regular detonations, the lead shock ignites all the gases passing through it, hence, the transverse waves and hydrodynamic instabilities do not play crucial role in propagation mechanism of such regular detonations. In comparison with previous numerical simulations present simulation using single-step kinetics shows a distinct keystone-shaped region at the end of the detonation cell.  相似文献   

18.
为考核壳体大变形对传爆接头传爆性能的影响,通过殉爆影响因素对爆炸序列和壳体变形的影响分析,设计了传爆接头间隙摸底试验.研究结果表明,对于复合材料纤维缠绕壳体,当发动机处于工作状态时,壳体发生较大变形,使传爆接头传爆界面出现间隙,对其传爆性能有较大影响;原有传爆接头已不适应壳体大变形的需要,需采取措施改进接头性能.  相似文献   

19.
In the present paper, we study the problem of detonation in unconfined, gaseous mixtures of methane/oxygen/nitrogen. A numerical simulation approach is employed in which we use a one-dimensional (spherical symmetry), time-dependent computer model to simulate the coupled compressible fluid dynamics-chemical kinetics processes which occur upon direct initiation of detonation. We establish the magnitude of explosive yield of tetryl required to initiate detonation in mixtures of CH4 + 2O2 with varying degrees of nitrogen dilution, up to and including stoichiometric . The numerical simulations illustrate the features of direct initiation observed in many experimental investigations, e.g. shock-wave breakaway followed by detonation reestablishment via a quasi-steady, oscillatory flow regime which occurs before the establishment of a steadily propagating spherical detonation. Our results compare well with recent experimental data obtained by Bull et al. (1976) over the range of tetryl masses studied by them. We find that tetryl explosive masses in excess of 107 grams would be required to initiate detonation in an unconfined, stoichiometric mixture.  相似文献   

20.
A Japanese spacecraft, Hayabusa2, the successor of Hayabusa, which came back from the Asteroid Itokawa with sample materials after its 7-year-interplanetary journeys, is a current mission of Japan Aerospace Exploration Agency (JAXA) and scheduled to be launched in 2014. Although its design basically follows Hayabusa, some new components are planned to be equipped in Hayabusa2 mission. A Small Carry-on Impactor (SCI), a small explosive device, is one of the challenges that were not seen with Hayabusa. An important scientific objective of Hayabusa2 is to investigate chemical and physical properties of the internal materials and structures. SCI creates an artificial crater on the surface of the asteroid and the mother spacecraft observes the crater and tries to get sample materials. High kinetic energy is required to creating a meaningful crater. The SCI would become complicated and heavy if the traditional acceleration devices like thrusters and rocket motors are used to hit the asteroid because the acceleration distance is quite large and guidance system is necessary. In order to make the system simpler, a technology of special type of shaped charge is used for the acceleration of the impact head. By using this technology, it becomes possible to accelerate the impact head very quickly and to hit the asteroid without guidance system. However, the impact operation should be complicated because SCI uses powerful explosive and it scatters high speed debris at the detonation. This paper presents the overview of our new small carry-on impact system and the impact operation of Hayabusa2 mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号