首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 763 毫秒
1.
As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. Here we discuss the concept of closure as it pertains to CELSS and describe engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5% of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in this facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.  相似文献   

2.
3.
Controlled Ecological Life Support Systems (CELSS) flight experimentation.   总被引:1,自引:0,他引:1  
The NASA CELSS program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been been conceived as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CTF will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. The science requirements of the CTF will be described, as will current design concepts and specific technology requirements for operation in micro-gravity.  相似文献   

4.
As NASA implements the U.S. Space Exploration Policy, life support systems must be provided for an expanding sequence of exploration missions. NASA has implemented effective life support for Apollo, the Space Shuttle, and the International Space Station (ISS) and continues to develop advanced systems. This paper provides an overview of life support requirements, previously implemented systems, and new technologies being developed by the Exploration Life Support Project for the Orion Crew Exploration Vehicle (CEV) and Lunar Outpost and future Mars missions. The two contrasting practical approaches to providing space life support are (1) open loop direct supply of atmosphere, water, and food, and (2) physicochemical regeneration of air and water with direct supply of food. Open loop direct supply of air and water is cost effective for short missions, but recycling oxygen and water saves costly launch mass on longer missions. Because of the short CEV mission durations, the CEV life support system will be open loop as in Apollo and Space Shuttle. New life support technologies for CEV that address identified shortcomings of existing systems are discussed. Because both ISS and Lunar Outpost have a planned 10-year operational life, the Lunar Outpost life support system should be regenerative like that for ISS and it could utilize technologies similar to ISS. The Lunar Outpost life support system, however, should be extensively redesigned to reduce mass, power, and volume, to improve reliability and incorporate lessons learned, and to take advantage of technology advances over the last 20 years. The Lunar Outpost design could also take advantage of partial gravity and lunar resources.  相似文献   

5.
Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.  相似文献   

6.
The anticipated evolution of life support technologies for ESA, considering both the complementary life support system requirements and the missions' characteristics, is presented. Based on these results, promising biological life support technologies for manned space missions have been selected by ESA either for their intrinsic ability and performance in effecting specific tasks for atmosphere-, water-, waste-management versus physico-chemical alternatives and/or for longer-term application to a more ecological concept (CES) focusing ultimately on food production. Actual status and plan for terrestrial and space testing of biological life support presented focusing on the "task specific" decontamination technology of the Biological Air Filter (BAF), and on food reprocessing technologies from biodegradable wastes with the MELISSA microbial ecosystem.  相似文献   

7.
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended.  相似文献   

8.
Recent advances in technologies required for a "Salad Machine".   总被引:1,自引:0,他引:1  
Future long duration, manned space flight missions will require life support systems that minimize resupply requirements and ultimately approach self-sufficiency in space. Bioregenerative life support systems are a promising approach, but they are far from mature. Early in the development of the NASA Controlled Ecological Life Support System Program, the idea of onboard cultivation of salad-type vegetables for crew consumption was proposed as a first step away from the total reliance on resupply for food in space. Since that time, significant advances in space-based plant growth hardware have occurred, and considerable flight experience has been gained. This paper revisits the "Salad Machine" concept and describes recent developments in subsystem technologies for both plant root and shoot environments that are directly relevant to the development of such a facility.  相似文献   

9.
The recovery of potable water from space mission wastewater is critical for the life support and environmental health of crew members in long-term missions. NASA estimates reveal that at manned space missions 1.91 kg/person day of urine is produced, with urea and various salts as its main components. In this research we explore the utilization of urease (EC 3.5.1.5, 15,000 U/g) along with a platinized boron doped diamond electrode (Pt-BDD) to degrade urea. Urea is directly degraded to nitrogen by the in situ utilization of the reaction products as a strategy to increase the amount of clean water in future space expeditions. The biochemical reaction of urease produces ammonia and carbon dioxide from urea. Thereafter, ammonia is electrooxidized at the interface of the Pt-BDD producing molecular nitrogen. The herein presented system has been proven to have 20% urea conversion efficiency. This research has potential applications for future long-term space missions since the reaction byproducts could be used for a biomass subsystem (in situ resource recovery), while generating electricity from the same process.  相似文献   

10.
空间增材制造技术的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
中国空间站旨在进行大量在轨科学实验和空间应用研究,在轨保障是支持空间站在全寿命周期内完成载人航天任务的重要途径.传统地面制造及上行补给方式难以满足较大规模应用的需求,亟需一种创新性的保障模式突破资源瓶颈,空间增材制造技术具有极大的潜力实现即造即用的资源保障模式.本文根据空间增材制造技术的最新研究进展,结合中国空间站和载人深空探测任务需求,对空间增材制造技术的在轨应用模式进行分析,提出了中国空间增材制造技术未来发展所面临的问题和解决途径.   相似文献   

11.
Extended manned space missions will require regenerative life support techniques. Past U.S. manned missions used nonregenerative expendables, except for a molecular sieve-based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The U.S. Space Station, scheduled to be operational in the 1990's, is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The paper uses the requirements for the Space Station to address these techniques.  相似文献   

12.
13.
The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables, and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example, the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review the results of four analog field tests (Moses Lake in 6/08, Mauna Kea in 11/08, Flagstaff in 9/09, and Mauna Kea in 1/10) that have begun the process of integrating ISRU into robotic and human exploration systems and missions, and propose future ISRU-related analog field test activities that can be performed in collaboration with non-US space agencies.  相似文献   

14.
载人探测近地小行星的工程规模和技术难度介于载人探月和载人火星探测之间,是人类开展载人火星探测和飞向更遥远深空的跳板,对于航天技术的发展和科学问题的探索有着极其重要的意义。在调研国外载人小行星探测方案设想的基础上,结合我国航天技术现状和发展趋势,提出了一种载人小行星探测的总体方案设想,并梳理了载人小行星探测的关键技术。研究成果可以作为我国载人小行星探测任务论证和设计的有益参考。  相似文献   

15.
An analysis for manned missions targeted to the Jovian system has been performed in the framework of the NASA RASC (Revolutionary Aerospace Systems Concepts) program on Human Exploration beyond Mars. The missions were targeted to the Jupiter satellite Callisto. The mission analysis has been divided into three main phases, namely the interplanetary cruise, the Jupiter orbital insertion, and the surface landing and exploration phases. The interplanetary phase is based on departure from the Earth-Moon L1 point. Interplanetary trajectories based on the use of different propulsion systems have been considered, with resulting overall cruise phase duration varying between two and five years. The Jupiter-approach and the orbital insertion trajectories are considered in detail, with the spacecraft crossing the Jupiter radiation belts and staying around the landing target. In the surface exploration phase the stay on the Callisto surface is considered. The satellite surface composition has been modeled based on the most recent results from the GALILEO spacecraft. In the transport computations the surface backscattering has been duly taken into account. Particle transport has been performed with the HZETRN heavy ion code for hadrons and with an in-house developed transport code for electrons and bremsstrahlung photons. The obtained doses have been compared to dose exposure limits.  相似文献   

16.
MELISSA is a micro-organisms based ecosystem conceived as a tool for understanding the behaviour of artificial ecosystems, and developing the technology for a future biological life support system for long term space mission. The driving element of MELISSA is the recovering of oxygen and edible biomass from waste (faeces, urea). Due to its intrinsic instability and the safety requirements of manned missions, an important control strategy is developed to pilot this system and to optimize its recycling performance. This is a hierarchical control strategy. Each MELISSA compartment has its local control system, and taking into account the states of other compartments and a global desired functioning point, the upper level determines the setpoints for each compartment. The developed approach is based on first principles models of each compartment (physico chemical equations, stoichiometries, kinetic rates, ...). Those models are used to develop a global simulator of the system (in order to study the global functioning). They are also used in the control strategy, which is a non linear predictive model based strategy. This paper presents the general approach of the control strategy of the loop from the compartment level up to the overall loop. At the end, some simulation and experimental results are presented.  相似文献   

17.
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR.  相似文献   

18.
A monitoring and control subsystem architecture has been developed that capitalizes on the use of model-driven monitoring and predictive control, knowledge-based data representation, and artificial reasoning in an operator support mode. We have developed an object-oriented model of a Controlled Ecological Life Support System (CELSS). The model, based on the NASA Kennedy Space Center CELSS breadboard data, tracks carbon, hydrogen, and oxygen, carbon dioxide, and water. It estimates and tracks resource-related parameters such as mass, energy, and manpower measurements such as growing area required for balance. We are developing an interface with the breadboard systems that is compatible with artificial reasoning. Initial work is being done on use of expert systems and user interface development. This paper presents our approach to defining universally applicable CELSS monitor and control issues, and implementing appropriate monitor and control capability for a particular instance: the KSC CELSS Breadboard Facility.  相似文献   

19.
Due to high resupply costs, especially for long-duration stays in space habitats beyond low earth orbit, future manned space missions will require life support systems (LSS) with a high degree of regenerativity. Possible ways to overcome the waste of resources and to save on resupply mass are therefore of major interest for the development of next generation environmental control and life support systems.  相似文献   

20.
A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号