首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
A 1,200-W solar AMTEC (alkali metal thermal-to-electric conversion) power system concept was developed and integrated with an advanced global positioning system (GPS) satellite. The critical integration issues for the SAMTEC with the GPS subsystems included: (1) packaging within the Delta II launch vehicle envelope; (2) deployment and start-up operations for the SAMTEC; (3) SAMTEC operation during all mission phases; (4) satellite field of view restrictions with satellite operations; and (5) effect of the SAMTEC requirements on other satellite subsystems. The SAMTEC power system was compared with a conventional planar solar array/battery power system to assess the differences in system weight, size, and operations, Features of the design include the use of an advanced multitube, vapor anode AMTEC cell design with 24% conversion efficiency, and a direct solar insolation receiver design with integral LiF salt canisters for energy storage to generate power during the maximum solar eclipse cycle, The modular generator design consists of an array of multitube AMTEC cells arranged into a parallel/series electrical network with built-in cell redundancy. Our preliminary assessment indicates that the solar generator design is scaleable over a 500 to 2,500-W range. No battery power is required during the operational phase of the GPS mission. SAMTEC specific power levels greater than 5 We/kg and 160 We/m2 are anticipated for a mission duration of 10 to 12 years in orbits with high natural radiation backgrounds  相似文献   

2.
Essential design factors and system characteristics are explored for integration of large power systems into manned space stations. The impact of the type of power system selected upon the space station is outlined, as is the impact of the mission requirements upon the selection of power systems. Criteria for resolving the selection/application/ integration problems are provided. Comparisons between systems are based on recently defined space-station models for 90-day to five-year mission durations in the 1970' s, with four-to nine-man crews. Power systems encompass power levels from 3 to 50 kWe and include solar cell/battery. fuel cell, hybrid fuel cell/solar cell, radioisotope, and nuclear reactor systems. Thermoelectric, Brayton cycle, organic Rankine, and liquid-metal Rankine power conversion systems are considered for the nuclear energy sources. Both rigid and roll-out photovoltaic array configurations are analyzed with respect to the solar energy source.  相似文献   

3.
刘畅  陈公牧  李路  王超  谢福林 《飞机设计》2013,(5):18-20,26
从太阳能模型飞机的发展状况,分析了太阳能电池应用在航模飞机上的技术难点,针对机载平台、太阳能电池应用、推进系统三方面提出了合理的解决优化方案。实践表明了在光照充足的情况下,能达到只依靠太阳能电池作为动力,实现滑跑起飞的要求。  相似文献   

4.
The authors demonstrate that the efficiency of GaAs satellite solar cells can be increased to 31% (AM0) with two straightforward modifications. First, the wire grid reflection losses on the GaAs cell can be eliminated by attaching and aligning a thin grooved cover slide. The grooves in this cover slide deflect the incident light rays away from the wire grid lines into the cell active area, increasing the efficiency from 22% to 24%. The second modification involves making the GaAs cell transparent to the infrared energy that normally is wasted and then placing an infrared sensitive GaSb booster cell behind the GaAs cell. This increases the AM0 solar energy conversion efficiency from 24% to 31%. The GaAs/GaSb tandem solar cells have conversion efficiencies of 37% if used for terrestrial (AM1.5) rather than space (AM0) solar electric power systems, high enough that utility-scale solar electric power may someday be economical  相似文献   

5.
刘刚  王正平  刘莉  张晓辉  曹潇 《航空学报》2020,41(3):623178-623178
针对太阳能无人机在飞行状态下可能出现的太阳能电池局部遮挡情况,开展相应的太阳能电池最大功率点追踪算法和能源控制研究。通过将发光亮度引入相对吸引力计算过程对萤火虫算法进行改进,实现了局部阴影情况下太阳能电池最大功率点的高效追踪。以此为基础,设计了考虑局部遮挡情况下太阳能无人机的太阳能电池/蓄电池混合能源状态机控制规则。以"蒲公英I"无人机为例,建立了太阳能电池阵列模型,开展了考虑局部遮挡情况下太阳能电池最大功率点追踪仿真实验;基于"蒲公英I"飞行剖面,开展了考虑局部遮挡情况的混合能源控制仿真试验。研究结果表明:改进的萤火虫算法可以实现在局部阴影情况下太阳能电池最大功率点的有效跟踪,与萤火虫算法相比收敛时间更短、且功率波动幅度更小;采用改进萤火虫算法和状态机能源管理策略,在考虑局部遮挡的飞行状态下可以实现太阳能电池/蓄电池之间的合理功率分配与控制。  相似文献   

6.
The voltage-current characteristic of solar cells that provide power for a spacecraft can vary over a wide range. For maximum power transfer from the solar cells to the battery system a power converter has to be designed that adjusts its input impedance to a value equal to the output impedance determined by the operating power characteristic of the solar cells. This paper discusses a circuit and calculations for a design to match this condition. The proposed power converter is simple, lightweight, and reliable and will be used in the Sunblazer satellite.  相似文献   

7.
At IECEC 2001, this team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing. In addition to excellent durability in the space environment, the near-term SLA will provide outstanding wing-level performance parameters: 180 W/kg specific power; 300 W/m/sup 2/ power density; 300 V operational voltage; 85% savings in cell area (cm/sup 2//W) and cell-related cost ($/W) compared to planar arrays; 9 kW/m/sup 3/ stowed power at launch.  相似文献   

8.
The development of hybrid inorganic/organic thin-film solar cells on flexible, lightweight, space-qualified, durable substrates provides an attractive solution for space power generation with high mass specific power (W/kg). The high-volume, low-cost fabrication potential of organic cells will allow for square miles of solar cell production at one-tenth the cost of conventional inorganic materials. Plastic solar cells take a minimum of storage space and can be inflated or unrolled for deployment. We explore a cross-section of NASA in-house and sponsored research efforts that aim to provide new hybrid technologies that include both inorganic and polymer materials as active and substrate materials. For NASA applications, any solar cell or array technology must not only meet weight and AMO efficiency goals, but also must be durable enough to survive launch and space environments. Also, balance of system technologies must be developed to take advantage of ultra-lightweight solar arrays in power generation systems.  相似文献   

9.
Preliminary Applications Technology Satellite-6 (ATS-6) solar cell flight experiment data through the first 325 days in synchronous orbit is present. The experiment is transmitting data on 16 different solar cell/cover glass configurations. The experiment is designed to study the effect of this orbit on select solar cells and cover glass parameters such as solar cell thickness and base resistivity, cover glass thickness variation, new cover and adhesive processes and materials such as 7940 and 7070 integral covers and the fluorinated ethylene propylene (FEP) covers, the COMSAT "violet" cell, and backside irradiation effects. The in-spece solar cell data indicate short circuit currents are higher by 1 to 8 percent than measurements made with solar simulations; maximum power varied between -1 to +6 percent . Degradation of /sc due to ultraviolet effects was determined to be about 2 percent after 50 days in orbit. All cells performed well through 325 days in orbit, except the FEP-covered cells, which appear to have increased their rate of degradation during the first eclipse season.  相似文献   

10.
Based on the experience gained from Sunrayce '95, the Solar Motion Team has made many changes to the design of the next generation solar car. These changes have resulted in a vehicle that is very different from the “Solar Rolar”, The Dakota Sun is a three wheeled vehicle with separate cab and solar array. This design allows for improved aerodynamics, decreased weight, lower rolling resistance, and ease of manufacture compared to the four wheeled catamaran used in the last race. However, this design sacrifices total enclosed wheel base area, additional room for components, and added power from side solar panels, The major objectives for the team's redesigned Sunrayce '97 entry are: systems integration; decrease the weight of the car; decrease aerodynamic drag; more efficient use of available energy; and increased driver safety. The team has set a standard to use the latest available technology. Although this increases the complexity of the components, by using a systems engineering approach the “Dakota Sun” has evolved into a more integrated vehicle. This philosophy of integrated design has resulted in great improvements in mechanical design and manufacturing techniques, as well as electrical innovations. The major design changes evident from the original Sunraycen '95 vehicle are the result of an evolutionary design process that has produced the highly competitive Sunraycel '97 design outlined in this article  相似文献   

11.
A detailed cost model has been developed to parametrically determine the program development and production cost of photovoltaic, solar dynamic, and dynamic isotope (DIPS) space power systems. The model is applicable in the net electrical power range of 3 to 300 kWe for solar power and 0.5 to 10 kWe for DIPS. Application of the cost model allows spacecraft or space-based power system architecture and design trade studies or budgetary forecasting and cost benefit analyses. The cost model considers all major power subsystems (i.e., power generation, power conversion, energy storage, thermal management, and power management/distribution/control). It also considers system cost effects such as integration, testing, and management. The cost breakdown structure, model assumptions, ground rules, bases, cost estimation relationship format, and rationale are presented, and the application of the cost model to 100-kWe solar space power plants and to a 1.0-kWe DIPS is demonstrated  相似文献   

12.
The following topics are dealt with: new solar cell performance developments; calibration related developments; solar array concentrator; solar cell efficiency; nighttime power generation  相似文献   

13.
The design of Space Station Freedom's electric power system (EPS) is reviewed, highlighting the key design goals of performance, low cost, reliability, and safety. The EPS design is divided into three separate areas: power generation and storage, power distribution, and power management and control. Both photovoltaic and solar dynamic power generation and storage systems are used. Tradeoff study results that illustrate the competing factors responsible for many of the more important design decisions are discussed. Reliability and maintainability, as well as verification and testing, are addressed  相似文献   

14.
介绍了空间电源系统的功能及组成结构。在大功率、高可靠性航天器发展应用背景下,从三个方面分析了空间电源系统设计的关键技术。跟踪国际最前沿的空间电源技术动态,指出空间电源系统的发展方向,并详细分析了功率控制模块电路,对后续电源系统的优化设计工作具有参考意义。  相似文献   

15.
对目前太阳能的几种常见的应用领域及相关装置进行了分析和研究,并在此基础上,结合相关理论,设计了利用太阳能的新型装置,如:太阳能房、太阳能热发电装置、聚光式太阳能电池发电装置等,这些装置将为更好地利用太阳能开辟新的途径.太阳能作为一种新兴的可再生能源有着不可限量的发展前景.  相似文献   

16.
为有效解决在日蚀区太阳能热推进器推力失效、电力中断的问题,提出了蓄热式太阳能热光伏-热推进双模系统结构,并对系统各部件建立相关物理数学模型,分析了工质种类、工质流量等因素对推进性能的影响。结果表明,为保证推进器在日蚀区30min内持续提供推力和电力供应,砷化镓热光伏电池在无工质工况下能提供10W左右的低功率电力供应,在设计工况下能提供50W~110W的电力供应;液氢作为工质时,最大比冲将达到806s,随着工质流量的持续增加,比冲损失速率呈现先加快后减慢的变化趋势;液氨作为替代工质具有更快的加热速率,其比冲为240s~300s远低于氢工质比冲,其推力系数1.77要略高于氢工质推力系数1.7。通过本文研究,蓄热式太阳能双模推进系统具有较好的可行性,且推力及比冲适中,有望弥补低比冲化学推进和小推力电推进技术的不足。  相似文献   

17.
太阳能无人机表面需要铺设太阳能电池,这就要求太阳能无人机的结构要同时满足不影响太阳能电池效率的光学特性和要达到足够强度、刚度的力学特性。文章针对小型太阳能飞机超大展弦比机翼进行轻质化结构设计,过程中充分考虑超大展弦比机翼的柔性变形,对比不同的设计方案并提出合理设计方案。  相似文献   

18.
Tornadoes represent the most dangerous and destructive of storms. This paper describes a concept for disrupting the formation of tornadoes in a thunderstorm. Beamed microwave energy from a satellite heats cold rain to affect convective forces in the storm cell. This describes a Thunderstorm Solar Power Satellite (TSPS). The TSPS is based on Space Solar Power Program (SSP) concepts and technology. The concept was evaluated in a numerical simulation using the Advanced Regional Prediction System Code at the Center for Analysis and Prediction of Storms (CAPS). Conditions for tornado formation were affected in the simulation. Additional simulation is proposed to determine the specific areas to be heated and the intensity of directed energy to affect tornadogenesis. Benefits from taming tornadoes provide a basis for initial government investment in TSPS. The potential benefits are balanced by reservations about safety. Demonstration of technology and operations may lead to commercial investment in space solar power. We conclude that the TSPS concept merits additional analysis, numerical simulation, and demonstration testing.  相似文献   

19.
This paper reviews a large number of silicon solar cell irradiation experiments performed over the last 10 years, including 1-MeV and energy spectrum electron studies, and low-(100-keV) and high-energy (up to 155-MeV) proton studies on bare and covered silicon solar cells of several types. The results of satellite flight experiments on individual solar cells are also presented, as well as data from complete solar arrays and data on the new high-efficiency solar cells. Experimental evidence indicates that the percentage of degradation is smaller in thin solar cells than in thick ones, and that cells with high resistivity (10 ?·cm) degrade less than cells with lower resistivity (1 ?·cm). It is shown that high-efficiency silicon solar cells produced at COMSAT Laboratories and pilot production groups of these cells retain most of their increased power output under irradiation. It is emphasized that all surfaces and edges of the solar cells must be completely shielded from the large flux protons in the space environment. Insufficiencies in the published data are noted in certain areas, and recommendations for additional research are presented. Finally, an extensive bibliography is included.  相似文献   

20.
A large-signal stability analysis of the solar array regulator system is performed to facilitate the design and analysis of a low-earth-orbit (LEO) satellite power system. The effective load characteristics of various control methods in the solar array regulator system, such as the constant power load, variable power load, constant voltage load, constant current load, and constant resistive load, are classified to analyze the large-signal stability. Then, using the state plane analysis technique, the large-signal behavior of the solar array system is portrayed and the stability of various equilibrium points is analyzed. Thus, this approach can be contributed to organize the optimal controller structure of the system by representing the relationship between the control method of the solar array regulator and the large-signal stability. For the verification of the proposed large-signal analysis, a solar array regulator system that consists of two 100 W parallel module buck converters has been built and tested using a real 200 W solar array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号