首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Three orders of arguments are outlined to illustrate the importance of small missions. First, the classical reasons (one has to begin small, educational aspects, introduction to the space field) are summarized; then some thoughts are introduced on the efficacy and the efficiency of the effort invested (how expensive is a national project, and how advantageous the inevitable multinational cooperation); finally, a synopsis of the considerations about the need for cultural changes in the space program (the challenge of the coming era, the resulting needs, the philosophy of “small missions” and its contributions) is given.  相似文献   

2.
文章通过对X-37B飞行器的飞行试验任务分析,指出了X-37B飞行器不是空天飞机,也不是全球快速打击平台,而是一种低成本太空进入能力的飞行验证器,它的作用定位在空间而不是在空中。通过飞行试验和验证试验,旨在打造一个可重复使用的轨道转移运载器。将美国2010年航天战略的重大调整、国际空间站的运行延期和航天飞机退役等事件结合起来,对X-37B发展的背后动因进行分析,有助于了解美国航天发展的未来趋势。经过动因的详尽分析,指出要特别关注美国航天战略调整的两个重心转向,尤其是两个转向背后的动机。如何正确地认识国际空间站的作用定位,对于审视载人航天的未来发展有重要意义。美国航天战略的调整使载人航天的重心回到近地轨道上。基于中国目前的能力现实,建议中国的载人航天重心放在地球轨道上,做好各种能力的建设,并利用这些能力把地球轨道上的事做得更好。  相似文献   

3.
Fry RJ 《Acta Astronautica》1994,32(11):735-737
At the beginning of the space age the dangers of hurtling into space were considerable. Despite this fact, radiation risks were examined in the U.S.S.R. and the U.S.A. and recommendations were made to limit the exposure of the crews to radiation. To date the radiation exposures of crews on missions in low-Earth orbits have been low. Now that missions in low-Earth orbit are becoming longer in duration and new missions into deep space are being considered, radiation protection guidelines become more important. Recently the estimates of the risks of radiation-induced cancer have been increased and new guidelines on radiation exposure limits for crew members must be developed. For deep space missions the guidelines take into account the risks posed by heavy ions. Unfortunately, knowledge about these risks is insufficient. If the new risk estimates are applied, current career dose limits may have to be reduced by a factor of two.  相似文献   

4.
A Mars manned space mission would be characterized by long-lasting psycho-social stress for its human participants. Based on the results of our and other authors' experiments with small human groups under simulated space stress conditions, and bearing in mind historical evidence of the changing role of women in human society, the differences of feminine and masculine cognitive patterns should be taken into greater account. Participation of women in astronautics should be reconsidered from the point of view of the roles of women as members of a space ship crew, as members of a space control centre and in relation to the family life of male astronauts on long-term space missions.  相似文献   

5.
A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions.  相似文献   

6.
未来的深空探测与空间环境模拟   总被引:1,自引:1,他引:1  
文章介绍了国内外有代表性的深空探测计划的内容、特点和意义,包括:欧空局的Exo Mars火星车、美国"2020火星车"以及中国的2020火星探测计划;金星着陆探测进展情况;欧空局木星系统探测计划"木星冰月亮探索者(JUICE)"和美国的"木卫二飞越任务(Europa Clipper)";"蜻蜓号(Dragonfly)"土卫六探测项目;美国的"彗星天体生物学探索取样返回(CAESAR)"项目;月球探测计划等。还分析了未来深空探测对空间环境模拟的具体要求,空间环境模拟对推动深空探测发展的重要意义;提出了对我国未来开展空间环境模拟试验的建议。  相似文献   

7.
In November 2000, the National Aeronautics and Space Administration (NASA) and its partners in the International Space Station (ISS) ushered in a new era of space flight: permanent human presence in low-Earth orbit. As the culmination of the last four decades of human space flight activities. the ISS focuses our attention on what we have learned to date. and what still must be learned before we can embark on future exploration endeavors. Space medicine has been a primary part of our past success in human space flight, and will continue to play a critical role in future ventures. To prepare for the day when crews may leave low-Earth orbit for long-duration exploratory missions, space medicine practitioners must develop a thorough understanding of the effects of microgravity on the human body, as well as ways to limit or prevent them. In order to gain a complete understanding and create the tools and technologies needed to enable successful exploration. space medicine will become even more of a highly collaborative discipline. Future missions will require the partnership of physicians, biomedical scientists, engineers, and mission planners. This paper will examine the future of space medicine as it relates to human space exploration: what is necessary to keep a crew alive in space, how we do it today, how we will accomplish this in the future, and how the National Aeronautics and Space Administration (NASA) plans to achieve future goals.  相似文献   

8.
Several nations are currently engaging in or planning for robotic and human space exploration programs that target the Moon, Mars and near-Earth asteroids. These ambitious plans to build new space infrastructures, transport systems and space probes will require international cooperation if they are to be sustainable and affordable. Partnerships must involve not only established space powers, but also emerging space nations and developing countries; the participation of these new space actors will provide a bottom-up support structure that will aid program continuity, generate more active members in the space community, and increase public awareness of space activities in both developed and developing countries. The integration of many stakeholders into a global space exploration program represents a crucial element securing political and programmatic stability. How can the evolving space community learn to cooperate on a truly international level while engaging emerging space nations and developing countries in a meaningful way? We propose a stepping stone approach toward a global space exploration program, featuring three major elements: (1) an international Earth-based field research program preparing for planetary exploration, (2) enhanced exploitation of the International Space Station (ISS) enabling exploration and (3) a worldwide CubeSat program supporting exploration. An international Earth-based field research program can serve as a truly global exploration testbed that allows both established and new space actors to gain valuable experience by working together to prepare for future planetary exploration missions. Securing greater exploitation of the ISS is a logical step during its prolonged lifetime; ISS experiments, partnerships and legal frameworks are valuable foundations for exploration beyond low Earth orbit. Cooperation involving small, low-cost missions could be a major stride toward exciting and meaningful participation from emerging space nations and developing countries. For each of these three proposed stepping stones, recommendations for coordination mechanisms are presented.  相似文献   

9.
《Acta Astronautica》2007,60(4-7):588-593
The paper discusses concepts about the role of architecture in the design of space habitats and the development of a general evaluation criteria of architectural design contribution. Besides the existing feasibility studies, the general requisites, the development studies, and the critical design review which are mainly based on the experience of human space missions and the standards of the NASA-STD-3000 manual and which analyze and evaluate the relation between man and environment and between man and machine mainly in its functionality, there is very few material about design of comfort and wellbeing of man in space habitat. Architecture for space habitat means the design of an artificial environment with much comfort in an “atmosphere” of wellbeing. These are mainly psychological effects of human factors which are very important in the case of a long time space mission. How can the degree of comfort and “wellbeing atmosphere” in an artificial environment be measured? How can the quality of the architectural contribution in space design be quantified? Definition of a criteria catalogue to reach a larger objectivity in architectural design evaluation. Definition of constant parameters as a result of project necessities to quantify the quality of the design. Architectural design analysis due the application and verification within the parameters and consequently overlapping and evaluating results. Interdisciplinary work between architects, astronautics, engineers, psychologists, etc. All the disciplines needed for planning a high quality habitat for humans in space. Analysis of the principles of well designed artificial environment. Good quality design for space architecture is the result of the interaction and interrelation between many different project necessities (technological, environmental, human factors, transportation, costs, etc.). Each of this necessities is interrelated in the design project and cannot be evaluated on its own. Therefore, the design process needs constant check ups to choose each time the best solution in relation to the whole. As well as for the main disciplines around human factors, architectural design for space has to be largely tested to produce scientific improvement.  相似文献   

10.
Why we need a space elevator   总被引:2,自引:1,他引:1  
The goals of and vision for development of a space elevator have been discussed repeatedly. However, why we should develop one has been glossed over. This paper will focus upon the major issue—why build a space elevator infrastructure? It considers why we need a space elevator, what missions it would enable and how far it would reduce costs. There is no doubt that some major missions would be enhanced or significantly enabled by a space elevator infrastructure. Global communications, energy, monitoring of the Earth, global/national security, planetary defense, and exploration beyond low-Earth orbit are a few examples. In the end, if we are serious about extending space development and avoiding limitations on the human spirit, the reason we should build a space elevator is because we must!  相似文献   

11.
The present paper discusses how the study of nutritional problems in space have proceeded, the way microgravity may alter nutritional requirements and how these may be met during long term missions in space.  相似文献   

12.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

13.
Outer space, a valuable natural resource, has to be managed in order to improve safety, efficiency and economy of space missions and to protect the space environment for future exploration and use. There are several aspects of the management of outer space, few in a satisfactory state, others receiving little attention from the international community, and still others not yet addressed at all. Some of the tasks following from the above requirements may have to be performed by an international space organization, created, possibly and preferably, within the UN system of organizations.  相似文献   

14.
The experience in operation and improving the Orlan-type space suits   总被引:1,自引:0,他引:1  
Nowadays significant experience has been gained in Russia concerning extravehicular activity (EVA) with cosmonauts wearing a semi-rigid space suit of the "Orlan" type. The conditions for the cosmonauts' vital activities, the operational and ergonomic features of the space suit and its reliability are the most critical factors defining the efficiency of the scheduled operation to be performed by the astronaut and his safety. As the missions performed by the cosmonauts during EVA become more and more elaborate, the requirements for EVA space suits and their systems become more and more demanding, resulting in their consistent advancement. This paper provides certain results of the space suit's operation and analysis of its major problems as applied to the Salyut and MIR orbiting stations. The modification steps of the space suit in the course of operation (Orlan-D, Orlan-DM, Orlan-DMA) and its specific features are presented. The concept of the suited cosmonauts' safety is described as well as trends for future space suit improvements.  相似文献   

15.
Bubble Technology Industries Inc. (BTI), with the support of the Canadian Space Agency, has finished the construction of the Canadian High-Energy Neutron Spectrometry System (CHENSS). This spectrometer is intended to measure the high energy neutron spectrum (approximately 1-100 MeV) encountered in spacecraft in low earth orbit. CHENSS is designed to fly aboard a US space shuttle and its scientific results should facilitate the prediction of neutron dose to astronauts in space from readings of different types of radiation dosimeters that are being used in various missions.  相似文献   

16.
系绳的安全性设计是成功实施空间系绳试验非常重要的一环。文章首先介绍了空间系绳的发展状况,然后对已有的系绳材料与结构作了详细的介绍与分析,并通过对国外历次空间系绳试验的总结,给出了从安全性角度如何选择系绳的考虑因素。  相似文献   

17.
Space agencies and governments have been long striving to find justification for the budgets allocated to non-commercial space missions. The most frequent justifications were scientific discoveries, technological development as well as national prestige. The current study aims to have a different look at the question “Which are the benefits brought by space?” by investigating/sampling/interrogating the public opinion and identifying the perception and view of the generation that form the bulk of the taxpaying citizens for the immediate future and will be actively financing any future missions. The study focuses on the answers provided to an online survey by an international sample of population. The target individuals are in the age range of 25–44 and are users of social networks. They are either employed or students, but they are not directly involved with the space sector. The survey aims to establish whether the promotional activities of ESA, NASA and other space agencies are aligned with the perceived benefits of this sample population. Is space contributing to what the target people consider important? What could be done to improve/change this perception? How did the public perception evolve? Which are the biggest problems humanity is confronted with today according to the sample population? Could space help addressing these major problems? The paper will firstly present the statistical analysis of the sample answers and the conclusions that can be drawn from them. In a second step it will compare the perceptions and expectations of the public in regards to space with the current space agencies strategies and identify the gaps and discontinuities.  相似文献   

18.
Canada is a space power with unique technical niches that support opportunities for collaboration on space technologies. When U.S.-origin space technologies are involved Canada's ability to collaborate internationally may be conditional on US law and policy. As a result, US export control law can be directly linked to the success or failure of Canadian collaboration. This article examines the strategic impact of U.S. export controls on Canadian autonomy to collaborate on international missions, including multi-use missions. Canadian space export control policy is also examined more broadly with the goal of providing specific policy recommendations that will enhance Canada's future as an international space actor.  相似文献   

19.
Kanas N 《Acta Astronautica》1998,42(1-8):339-361
Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.  相似文献   

20.
Future piloted missions to explore asteroids, Mars, and other targets beyond the Moon will experience strict limitations on communication between vehicles in space and control centers on Earth. These limitations will require crews to operate with greater autonomy than any past space mission has demonstrated. The Antarctic Search for Meteorites (ANSMET) project, which regularly sends small teams of researchers to remote parts of the southern continent, resembles a space mission in many ways but does not rely upon a control center. It provides a useful crew autonomy model for planners of future deep space exploration missions. In contrast to current space missions, ANSMET gives the crew the authority to adjust competing work priorities, task assignments, and daily schedules; allows the crew to be the primary monitor of mission progress; demands greater crew accountability for operational errors; requires the crew to make the most of limited communication bandwidth; adopts systems designed for simple operation and failure recovery; and grants the crew a leading role in the selection and stowage of their equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号