首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
空间信号完好性监测技术研究   总被引:1,自引:0,他引:1  
星基增强导航系统(SBAS)通过向用户提供用户差分距离误差(UDRE:User Differential RangeError),来保证广播星历和星钟改正数的精度。本文设计了UDRE的一种改进算法,建立卫星导航系统星钟和星历误差的状态方程和量测方程,进行卡尔曼滤波计算星历与星钟误差改正数与改正精度,通过滤波误差估计精度矩阵计算UDRE,并做了相应的仿真分析和比较,结果表明:改进算法能够对UDRE做出更好的估计来满足星历及钟差改正误差相对应的伪距误差的置信限值。  相似文献   

2.
针对北斗全球卫星导航系统混合星座条件下不同星历参数表达方法的性能评估问题,采用了从信息占用量、轨道拟合精度、接收机首次定位时间3个方面统筹考虑的评价方法。针对北斗系统的混合星座构型,比较北斗广播星历16参数和新设计的广播星历18参数的参数定义及用户算法异同,分析了不同星历参数表达所带来的性能变化。仿真分析结果表明,两种星历参数表达虽然都能描述北斗混合星座中的地球同步轨道(GEO)、中间地球轨道(MEO)、倾斜地球同步卫星轨道(IGSO)的卫星轨道特性,但是它们的具体性能有明显的差异,星历18参数的轨道拟合精度比16参数的提高了2~3cm,但其信息表达却多占用了63bit,且接收机首次定位时间多消耗了1.26s。  相似文献   

3.
基于解析法的用户差分距离误差解算方法(英文)   总被引:1,自引:1,他引:0  
为了进一步增强星基导航系统的完好性性能,提出了一种基于解析法的用户差分距离误差计算方法。文中首先介绍了卫星时钟和星历改正数的计算方法,认为计算用户差分距离误差的关键是查找卫星服务区域内的最差用户位置。通过变换卫星时钟和星历误差协方差矩阵,将查找最差用户位置变换成一个解析几何问题,通过数学推导得出最差用户位置的解析式,进而求解用户差分距离误差。通过计算机仿真对比了解析法和遍历法之间的性能差异,结果表明:解析法的正确性由遍历法得到了验证,解析法可以减少90%的运行时间并且具有更低的计算复杂度,便于工程实现。  相似文献   

4.
本文针对TDRSS(跟踪和数据中继卫星系统)的两颗中继卫星(地球赤道同步卫星)的双差分数据,给出了确定用户星(放跟踪航天器)轨道的一种方法。由于减小了中继卫星星历误差对用户星位置误差的影响,消除了中继卫星仪器误差,特别是完全消除了中继卫星、用户星和地面站问的任何时钟误差的影响,因此,对提高用户星测轨精度是十分有利的。  相似文献   

5.
以导航增强为背景,总结归纳了伪卫星工程应用中面临的四大技术难点:时间同步技术、星历编排广播技术、多路径效应和远近效应,并重点对时间同步技术进行了研究.伪卫星作为现有导航星座的补充卫星,一方面改善了星座的几何分布,而另一方面由于授时和时间维持能力有限,又会在原有测距误差的基础上引入新的误差.因此,在伪卫星引入时,需要定量地分析授时精度与几何分布两者之间的关系.通过将授时误差等效为系统误差,给出了在导航增强条件下的伪卫星授时精度要求不等式,该不等式受到伪卫星引入前后精度因子PDOP0和PDOP1以及用户测距误差标准差σUERE的影响;定量给出了伪卫星授时精度要求的性能要求,当授时精度满足不等式要求时,导航增强系统才能提高用户定位/授时精度.  相似文献   

6.
基于LT-01A卫星星载BDS-3/GPS观测值进行了星载实时精密定轨研究,并重点分析了广播星历旋转误差对实时定轨精度的影响。通过赫尔默特转换评估了所选时段内GPS和BDS-3广播星历轨道旋转误差,显示BDS-3广播星历旋转误差可达-8.7 mas,平均量级较GPS大约2.5倍。BDS-3广播星历经旋转改正后,轨道切向、法向均方根(RMS)误差从25 cm左右提升至10 cm量级,提升幅度超过50%。因此,基于星载BDS-3以及BDS-3/GPS联合的实时定轨精度受BDS-3星历旋转误差影响严重,且主要作用于切向和法向。经过旋转改正后,单独BDS-3实时定轨在切向、法向、径向RMS分别为21.0 cm、10.7 cm及11.2 cm,其切向和法向精度比改正前分别提升15.0%和31.8%;BDS-3与GPS联合定轨进一步提升切向精度至19.4 cm。得益于BDS-3广播星历较高的精度,单BDS-3以及BDS-3/GPS联合的实时定轨在旋转改正前的三维RMS分别为31.9 cm和29.2 cm,较单GPS实时定轨分别提升9.1%和16.8%;添加旋转改正后,其定轨精度分别提升至26.7 ...  相似文献   

7.
在GPS短基线相对定位中,可以根据多路径误差周期约为1天的重复性特点建立误差模型,采用坐标域或观测值域滤波的方法进行多路径误差改正.北斗系统由GEO、IGSO和MEO三种卫星类型组成,其中MEO卫星类型接近7天的轨道周期与GEO和IGSO约为1天的轨道周期差异较大,因此对北斗观测值进行多路径误差改正时只能采用观测值域滤波方法.本文以某水库大坝形变监测网为例,对GPS和BDS观测值分别建立多路径误差模型,根据各自卫星轨道周期进行多路径误差改正,结果表明经改正后大坝形变监测精度有较大提高.  相似文献   

8.
以北斗系统空间信号接口控制文件中规定的卫星位置计算标准算法为基础,研究了采用北斗广播星历实时计算北斗GEO(Geostationary Earth Orbit,地球静止轨道)卫星速度的算法。首先,通过将开普勒参数和摄动改正项对时间求导,给出了计算北斗GEO卫星瞬时速度的直接求速算法并进行了验证测试。接着,探讨了微分步长对北斗GEO卫星位置微分求速精度的影响。进一步,采集真实北斗GEO卫星广播星历数据,选择代表卫星,采取不同微分步长,分别按照位置微分与直接求速计算卫星速度,并进行了比对测试。验证测试结果证明了北斗GEO卫星直接求速算法的理论正确性,该算法可作为计算GEO卫星瞬时速度的标准算法;比对测试结果则表明适用于北斗GEO卫星位置微分求速的合理微分步长应为1s。  相似文献   

9.
随着我国北斗三号基本系统的正式运行,基于地面监测站的广域差分增强系统成为进一步提升卫星导航定位精度的手段之一。在码噪声多径误差修正(CNMC)的基础上,使用等效钟差方法实现GNSS卫星轨道与钟差误差的解耦,并依据卫星轨道运动的动力学特性,引入希尔差分方程描述卫星轨道误差变化,实现对轨道误差的实时卡尔曼滤波估计。基于GPS实测数据,对改正前后的用户等效测距误差(UERE)和定位精度进行了对比研究。实验结果表明,采用该方法,UERE标准差由改正前的0.456 m减小至0.227 m,降幅达到50.22%;整体水平定位误差(95%置信区间)由0.981 m减小至0.782 m,垂直定位误差(95%置信区间)由1.991 m减小至1.131 m,分别提升了20.29%和43.19%,差分改正效果明显。  相似文献   

10.
GPS精度控制(SA)措施降低了GPS标准定位业务(SPS)非差分用户的定位精度。常说的SPS可达精度在正常条件下为100米(2DRMS)。在缺乏更多具体条件下,许多未来的SPS用户在他们的规划中采用了100米这一精度值,但多数情况下,是夸大了实际定位误差。在本文中,我们针对轨道用户星的点定位和动力学轨道确定来研究SA带来的误差。要使SA带来的误差减至最小,非差分用户有几种选择:扩大接收视场;观测尽可能多的GPS卫星;在时间上平滑误差;选用独立计算的GPS精密轨道星历(如NASA和美国测绘局计算的),而不采用广播星历。仿真计算表明,3维点位误差可保持在30米,并且在几小时内能平滑到3米。  相似文献   

11.
接收机伪距与伪距率的计算和误差补偿是进行北斗系统应用开发的关键之一。本文利用北斗卫星播发的星历等导航电文数据,计算得到北斗卫星位置与速度等信息,对接收机伪距误差补偿,并计算得到伪距率。利用卫星的位置、速度,得到伪距和伪距率的误差值,验证了伪距和伪距率的有效性。  相似文献   

12.
为提高GNSS卫星钟差实时估计精度,针对GNSS各卫星系统的轨道差异,分析各系统卫星轨道误差对钟差估计的影响,基于距离函数线性化二阶残余项的思想,提出了一种顾及轨道误差的权函数模型,以优化实时卫星钟差估计策略。利用全球均匀分布的IGS和iGMAS跟踪站的实时观测数据进行实验,并与GBM的事后精密钟差进行对比分析。结果表明: GPS精度提高率为6.47%,BDS精度提高率为6.46%,GLONASS精度提高率为7.42%,Galileo精度提高率为7.62%。  相似文献   

13.
区域监测站提供的星基增强完好性监测服务在民用航空等生命安全领域发挥着重要作用。为了分析利用不同尺度监测网估计的完好性信息对用户服务性能影响,使用等效钟差方法分别实现三种不同尺度的监测网完好性参数估计,并进行增强定位验证。从增强卫星数目、用户测距误差、定位精度和保护级包络特性方面研究不同尺度的监测网对用户服务性能评估的影响,结果表明:与小尺度和中等尺度区域相比,大尺度区域增强卫星数目分别增加了50.7%、33.7%。与广播星历伪距单点定位相比,基于小、中等和大尺度区域监测网估计的改正数增强定位在水平方向定位精度分别提升了33.08%、33.59%和32.54%,垂直方向定位精度分别提升了36.56%、41.07%和43.86%。三种尺度估计的平均用户测距误差均优于0.3 m,保护级水平对定位误差的包络均能达到95%。研究成果可为区域星基增强监测网的选择提供理论支撑和应用依据。  相似文献   

14.
The visibility for low earth orbit(LEO) satellites provided by the BeiDou-2 system is analyzed and compared with the global positioning system(GPS). In addition, the spaceborne receivers' observations are simulated by the BeiDou satellites broadcast ephemeris and LEO satellites orbits. The precise orbit determination(POD) results show that the along-track component accuracy is much better over the service area than the non-service area, while the accuracy of the other two directions keeps at the same level over different areas. However, the 3-dimensional(3D) accuracy over the two areas shows almost no difference. Only taking into consideration the observation noise and navigation satellite ephemeris errors, the 3D accuracy of the POD is about30 cm. As for the precise relative orbit determination(PROD), the 3D accuracy is much better over the eastern hemisphere than that of the western hemisphere. The baseline length accuracy is 3.4 mm over the service area, and it is still better than 1 cm over the non-service area. This paper demonstrates that the BeiDou regional constellation could provide global service to LEO satellites for the POD and the PROD. Finally, the benefit of geostationary earth orbit(GEO) satellites is illustrated for POD.  相似文献   

15.
高精度的卫星时钟修正是全球卫星导航系统实时精密单点定位和授时服务的重要基础。为了提高GNSS钟差预报精度,需要对GNSS星载原子钟的周期特性进行分析。基于2016年全年的GNSS精密卫星钟差数据,利用中位数方法进行了数据预处理,使用多项式拟合模型分析了卫星钟的拟合残差,利用频谱分析法分析了BDS、GPS卫星钟差的周期特性,全面分析了BDS、GPS星载原子钟的周期特性。分析结果表明:除Cs钟外,其他卫星钟差都表现出较好的周期特性,BDS、GPS的主周期项基本在12h、24h、6h附近;同时不同的轨道、原子钟,其钟差周期项不同,而相同的轨道类型,其钟差周期项也存在一定差异;卫星的钟差主周期分别近似为其卫星轨道周期的1/2倍、1倍、2倍。  相似文献   

16.
星载原子钟是卫星导航系统的关键设备,原子钟主要通过影响卫星钟差对定位精度产生影响,分析了GNSS星载原子钟性能对定位精度的影响.通过原理分析,建立了原子钟稳定度与卫星导航系统定位精度的关系.在不考虑控制段对星钟校准误差的前提下,将原子钟噪声与星上工作环境因素作为主要因素,分析了GPS-IIF铷钟和铯钟对钟差/定位误差的影响,并给出了分析结果.最后,利用iGMAS提供的钟差产品数据,对比了北斗和GPS部分原子钟的稳定度及其对定位精度的影响,为后续星载原子钟的发展与选择提供了一定参考.  相似文献   

17.
《中国航空学报》2023,36(5):475-485
The Tianhui-2 02 (TH02-02) satellite formation, as a supplement to the microwave mapping satellite system Tianhui-2 01 (TH02-01), is the first Interferometric Synthetic Aperture Radar (InSAR) satellite formation-flying system that supports the tracking of BeiDou global navigation Satellite system (BDS3) new B1C and B2a signals. Meanwhile, the twin TH02-02 satellites also support the tracking of Global Positioning System (GPS) L1&L2 and BDS B1I&B3I signals. As the spaceborne receiver employs two independent boards to track the Global Navigation Satellite System (GNSS) satellites, we design an orbit determination strategy by estimating independent receiver clock offsets epoch by epoch for each GNSS to realize the multi-GNSS data fusion from different boards. The performance of the spaceborne receiver is evaluated and the contribution of BDS3 to the kinematic and reduced-dynamic Precise Orbit Determination (POD) of TH02-02 satellites is investigated. The tracking data onboard shows that the average number of available BDS3 and GPS satellites are 8.7 and 9.1, respectively. The carrier-to-noise ratio and carrier phase noise of BDS3 B1C and B2a signals are comparable to those of GPS. However, strong azimuth-related systematic biases are recognized in the pseudorange multipath errors of B1C and B3I. The pseudorange noise of BDS3 signals is better than that of GPS after eliminating the multipath errors from specific signals. Taking the GPS-based reduced-dynamic orbit with single-receiver ambiguity fixing technique as a reference, the results of BDS3-only and BDS3 + GPS combined POD are assessed. The Root Mean Square (RMS) of orbit comparison of BDS3-based kinematic and reduced-dynamic POD with reference orbit are better than 7 cm and 3 cm in three-Dimensional direction (3D). The POD performance based on B1C&B2a data is comparable to that based on B1I&B3I. The precision of BDS3 + GPS combined kinematic orbit can reach up to 3 cm (3D RMS), which has a more than 25% improvement relative to the GPS-only solution. In addition, the consistency between the BDS3 + GPS combined reduced-dynamic orbit and the GPS-based ambiguity-fixed orbit is better than 1.5 cm (3D RMS).  相似文献   

18.
全球导航卫星系统(GNSS)超快精密定轨为GNSS实时应用提供了高精度空间基准。基于天地协同定位、导航与授时(PNT)网络服务中心实现了四系统GNSS卫星超快精密定轨,并对定轨结果进行精度评价。介绍了天地协同PNT网络的概念内涵以及网络服务中心部署的超快精密定轨软件架构和详细功能,并针对实时应用需求提出了一种双线程滑动窗口超快精密定轨策略。最后利用重叠弧段比较、与外部轨道产品比较以及卫星激光测距(SLR)检核3种方式对定轨结果进行了精度评价。结果表明,与武汉大学分析中心的最终事后精密轨道产品相比,四系统GNSS MEO卫星预报6 h弧段的径向均方根(RMS)误差整体在2~5 cm水平,BDS2 IGSO卫星最小一维RMS误差在10~15 cm水平;GPS和Galileo卫星的SLR检核残差均值在1~3 cm水平,标准差在3~6 cm水平,能够满足后续厘米级实时应用对空间基准的精度需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号