首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents the results of developing of physical and mathematical model making it possible to take into account the effect of droplets non-uniformity in space and size distribution on ignition conditions for fuel sprays. The influence of condensed phase volume fraction on ignition and combustion of sprays was studied, physical and mathematical models for multi-phase flows, mixture formation and combustion of liquid fuels based on solving Navier–Stokes equations for gas phase accounting for thermal and mechanical interaction with poly-dispersed droplets array. The problems of particulate phase dynamics are regarded accounting for the interaction with gas phase atomization, evaporation and combustion.It was shown that depending on droplet size distribution and aerosol cloud density different flow scenarios were possible.Several ignition zones could be formed behind incident shock wave depending on mixture properties and initiation parameters. The possibility of numerical simulation permitting variation of definite parameters only made it possible to explain this fact.  相似文献   

2.
Cylindrical heterogeneous detonation waves   总被引:1,自引:0,他引:1  
Further experimental studies of blast wave initiated cylindrical heterogeneous (liquid fuel drops, gas oxidizer) detonation waves are described. A pie-shaped shock tube, used for these studies, was altered in certain ways so as to improve the modeling of cylindrical waves. These modifications, along with some operational aspects, are briefly discussed. The breech of the facility, where the blast wave is generated by an explosive, became distorted with usage. Results are presented which show that lower detonation velocities are realized with the damaged breech (other conditions being the same). A photographic and pressure switch wave time of arrival study was made to ascertain the wave shape. Photographs are shown which show that the waves, blast as well as detonation, are close to cylindrical. However, in some cases there is appreciable distortion of the wave front by debris ahead of the wave. Presumably this debris comes from the blasting cap used to ignite the condensed explosive. A series of experiments was conducted using kerosene drops of 388 μm diameter dispersed in air through use of a large number of hypodermic needles. Radial fuel void regions were established by cutting off the fuel flow to a number of needles. Preliminary results relating to the effect of the size of the cloud gap on detonation velocity, quenching, and the initiator energy levels required for detonation are discussed.  相似文献   

3.
某固体火箭发动机点火启动过程三维流场一体化仿真   总被引:2,自引:0,他引:2  
以某固体发动机的燃烧室和喷管为一体化研究对象,采用三维流场控制方程,应用有限体积法计算了发动机点火启动过程中燃烧室和喷管内燃气的流场特性。发动机药柱上的着火点最初出现在药柱星角尖上,然后向四周扩展;在药柱点火初期,燃气压力波先于火焰峰到达喷管;随着燃烧室内燃气压力升高,压力沿轴向分布逐渐平缓;当喷管进口压力与出口背压比达到某一值时,喷管扩张段内出现一道激波,随着压力比的升高,激波最终移出喷管,燃气流速在喷管出口处达到最大值。  相似文献   

4.
Spherical detonations have been initiated by solid explosive (Tetryl) charges in well-mixed stoicheiometric air mixtures with each of the hydrocarbons, ethane, propane, n-butane, isobutane and ethylene at atmospheric pressure. Prior to initiation, the gases were contained in plastic bags; total gas volume and available path length were up to 1.6 m3 and 2 m, respectively. The detonations were shown to be self-sustained by continuous measurement of detonation velocity using X-band microwave interferometry. Measured detonation velocities were in all cases close to calculated C-J values.In a few experiments close to the limits of detonability, velocity and blast pressure/time records indicated that the propagating wave system is sometimes irregular. The irregularity that occurs just after initiation is characterised by a reaction front velocity very much lower than the constant detonation velocity, but subsequently attaining the latter by an acceleration process. These observations indicate the existence of a dissociated phase in which shock and reaction fronts may no longer be coupled.Because similar experimental conditions were used throughout, it was possible to establish the relative susceptibilities of the various fuel gases to detonation. Comparison is made with the Zeldovich criterion and a detonation kernel theory of Lee.  相似文献   

5.
An analytical expression for gas-phase ignition is developed for a diffusion flame in the two-dimensional or axisymmetric stagnation-point boundary-layer flow of a hot oxidizing gas about a vaporizing condensed fuel surface. The analysis is based on the limit of large activation energy for a one-step, irreversible reaction describing the overall combustion process in the gas phase. The approach in this work, following that of our recent analysis on extinction for the same geometry, is to seek an exact correspondence of the parameters of the present problem with those of counterflow diffusion-flame problem of Liñán. Such a correspondence has been found in the frozen-flow regime and as a consequence, the asymptotic structure of the flame in the nearly frozen ignition regime is identical in both the problems. A particular result of this observation is the availability of an analytical criterion for ignition in the present problem. The analysis reveals that contrary to the case of extinction, fluid dynamic details do not have significant effect on the ignition criterion and that Liñán's results may be applied with good accuracy to the condensed fuel problem.  相似文献   

6.
An asymptotic analysis is presented for the ignition of a solid fuel that gasifies endothermically then reacts exothermically in the gas phase through a one-step Arrhenius process. The endothermic gasification was analyzed in an earlier paper; the present paper employs those results in treating the gas-phase reaction. It is shown that depending on values of the chemical parameters, the gas-phase ignition reaction may begin either at the time that gasification begins or during the later stage of transport-controlled gasification. In the former case, results for the gas-phase ignition time are similar to those for condensed-phase ignitions. In the latter case, a mixing layer develops in the gas-phase and moves away from the surface, the exothermic reaction being negligible until thermal runaway occurs somewhere within the mixing layer. Both early-time and late-time ignitions within the mixing layer are analyzed by solving partial differential equations derived from perturbations for large activation energies and a small ratio of gas to solid thermal responsivity. The theory serves to indicate how ignition by gas-phase reactions may be distinguished experimentally from ignition by condensed-phase or heterogenous reactions.  相似文献   

7.
Propagation of shock waves in tubes filled with water foams is studied using pressure gauges. Low amplitude shock waves consist of a precursor which propagates at a velocity slightly less than the acoustic velocity in the gas, and of a main compression wave which propagates slower than the precursor. Stronger shock waves have a single front. Maximum pressure rise in the incident and reflected shock waves cannot be calculated using one-dimensional conservation equations at the shock front. It is suggested that the flow of the liquid in foam cells has to be taken into account in order to predict the behavior of shock waves in foams. The nature of the gas which fills the cells is shown to have a strong effect on the quenching of blast waves in foams.  相似文献   

8.
Boundary layer stripping of liquid drops fragmented by Taylor instability   总被引:1,自引:0,他引:1  
A model is presented to describe the breakup of large ( 1 mm diameter) liquid drops by shock waves such as occurs in the heterogeneous detonation of liquid fuel sprays. After passage of a shock, high speed gas flow is established about the drops with large Reynolds number, large Weber number and large ratio of Weber number to the square root of the Reynolds number. Under these conditions, a thin liquid boundary layer is formed in the windward surface of a drop and is stripped from the drop at its equator. The rate of mass loss from the drop is small initially, but is increased an order of magnitude by fragmentation of the original drop. This fragmentation occurs because of Taylor instability of the windward surface of the accelerating drop. Calculations based on boundary layer stripping, which include the increase in liquid surface area due to fragmentation, give mass loss rates in general agreement with experimental observations.  相似文献   

9.
凌江  徐义华  孙海俊  冯喜平 《火箭推进》2022,48(1):69-75,89
固体火箭燃气超燃冲压发动机具有高比冲、结构简单、流量易调节等优点,然而在超音速空气流的补燃室中,如何让燃料更好地与空气掺混,增加颗粒停留时间,在较短时间内释放出更多的燃烧焓成为目前研究的重点。采用Realiazble k-ε湍流模型,单步涡团耗散模型,在King的硼颗粒点火燃烧模型的基础上考虑了硼颗粒在高速气流当中的气动剥离效应,利用龙格-库塔算法迭代计算硼颗粒点火燃烧过程,对燃气进气方向与轴向夹角从45°~180°的10种进气方式下的补燃室进行了三维两相燃烧流动计算,分析了各种进气角下的燃气燃烧效率、硼颗粒燃烧效率以及总燃烧效率。结果表明:当一次燃气喷射角度与轴向夹角逐渐增加时,燃气与颗粒燃烧效率逐渐增加,并在180°时燃烧效率和比冲为最高。  相似文献   

10.
以喷射棒式双脉冲发动机燃烧室、级间隔离装置和喷管一体化为研究对象,采用数值仿真技术对Ⅱ脉冲点火过程三维流场特性进行分析研究。计算结果表明,点火初期燃气压力波峰超前于火焰峰到达级间隔离装置,并以压强冲击波形式传播,Ⅱ脉冲燃烧室相对高压区位置不断发生改变;级间孔打开过程对药柱末端压强影响较大,但对Ⅱ脉冲燃烧室压强整体上升过程影响较小;级间孔打开后,燃气经级间孔加速后形成高度欠膨胀射流,并在Ⅰ脉冲燃烧室内形成非对称带状低压区;级间孔分布的非对称性,导致压强及温度在发动机燃烧室中呈现显著的三维分布特性;高温区出现在隔板附近,而在装药前端、装药末端及外围级间孔轴线附近出现低温区。  相似文献   

11.
An analysis is presented to describe the heterogeneous ignition of a condensed fuel suddenly exposed to a hot oxidizing atmosphere. The exothermic heterogeneous reaction, generating gaseous products, is considered to be of the Arrhenius type with an activation energy large compared with the initial thermal energy of the fuel. Instantaneously after contact with the gases the surface temperature rises to a jump value which is calculated allowing for variable transport properties of fuel and gas. The effect of the chemical heat release and the cooling effect due to the gasification flow are taken into account in obtaining an integral equation, involving a single parameter Δ, which is solved to describe the evolution of surface temperature with time. A runaway in surface temperature is found to occur at a well defined ignition time, which is calculated as a function of Δ. For values of Δ above a critical value no ignition occurs because the cooling effects of the gasification flow dominate over the effects of chemical heat release.  相似文献   

12.
氧气/醇类燃气发生器启动过程试验研究   总被引:4,自引:1,他引:3  
对氧气/醇类燃气发生器进行了热态试验,对启动过程进行了描述和分析,并引入点火时间和着火延迟两个参数深入研究了燃气发生器的启动规律。研究表明,燃烧室流量密度的增加对燃气发生器的点火时间影响不大,但会引起着火延迟的明显增加;时序中氧气与燃料两种组元进入燃烧室的时刻对启动过程有较大的影响,二者存在一个最优的时间间隔,可以保证燃气发生器快速、平稳、安全的启动。  相似文献   

13.
The trajectory of and the flow field behind blast waves with time varying energy input is determined. Freeman's (1968) Lagrangean coordinate formulation is modified to include both the geometric factor, α, for plane, cylindrical and spherical shocks and also non-integer values of β, the energy input parameter, in a single computational algorithm. Numerical problems associated with vanishing density at the inner mass boundary or “piston face” are then examined and solved. Second order perturbation solutions about the solution for an infinite strength shock are then obtained in Sakurai's (1965) inverse shock Mach number expansion parameter for 0 β < α + 1. Tables and graphs of significant numerical coefficients are presented for comparison to, and extension of, results of other authors. Graphs of typical shock trajectories and flow field density, pressure and velocity variations are also presented and discussed.  相似文献   

14.
本文根据固体推进剂采用含有凝结物质的流动热气体进行点火的特点,提出了一个点火过程的机理,即认为在点燃之前凝结物质的热粒子首先沉积在推进剂的表面上形成一层沉积层,并根据传热理论建立了固体推进剂采用含有凝结物质的流动热气体点火的模型,求得了固体推进剂内部的温度分布和表面温度随时间的变化,以及计算点火延迟时间的解析解,再根据对流换热系数与压力的关系计算出点火延迟时间与压力的关系,将理论计算的点火延迟时间和压力的关系与实验结果比较表明理论模型是合理的。为了验证本文所提出的点火过程的沉积机理,设计了一个实验,实验结果表明在点燃之前推进剂表面确实存在一个沉积层,因而合理的理论模型应该包括这个沉积过程。  相似文献   

15.
机械冲击载荷下固体推进剂热点微观模型探讨   总被引:5,自引:2,他引:3  
分析了推进剂内部初始裂纹在机械冲击载荷作用下的扩展以及与反应气体产物相互作用。利用Ⅰ、Ⅱ型裂纹扩展、推进剂分解化学动力学模型,建立微观热点模型,研究了裂纹面摩擦、推进剂分解以及裂纹内部气相反应等微观过程。进行数值模拟计算,得出了推进剂产生高温热点或导致冲击点燃的外部条件。认为裂纹间摩擦和气相产物在高速冲击下压缩可导致推进荆热点产生。  相似文献   

16.
Computer simulation of liquid fuel jet injection into heated atmosphere of combustion chamber, mixture formation, ignition and combustion need adequate modeling of evaporation, which is extremely important for the curved surfaces in the presence of strong heat and mass diffusion fluxes. Combustion of most widely spread hydrocarbon fuels takes place in a gas-phase regime. Thus, evaporation of fuel from the surface of droplets turns to be one of the limiting factors of the process as well. The problems of fuel droplets atomization, evaporation being the key factors for heterogeneous reacting mixtures, the non-equilibrium effects in droplets atomization and phase transitions will be taken into account in describing thermal and mechanical interaction of droplets with streaming flows. In the present paper processes of non-equilibrium evaporation of small droplets will be discussed. As it was shown before, accounting for non-equilibrium effects in evaporation for many types of widely used liquids is crucial for droplet diameters less than 100 μm, while the surface tension effects essentially manifest only for droplets below 0.1 μm. Investigating the behavior of individual droplets in a heated air flow allowed to distinguish two scenarios for droplet heating and evaporation. Small droplets undergo successively heating, then cooling due to heat losses for evaporation, and then rapid heating till the end of their lifetime. Larger droplets could directly be heated up to a critical temperature and then evaporate rapidly. Droplet atomization interferes the heating, evaporation and combustion scenario. The scenario of fuel spray injection and self-ignition in a heated air inside combustion chamber has three characteristic stages. At first stage of jet injection droplets evaporate very rapidly thus cooling the gas at injection point, the liquid jet is very short and changes for a vapor jet. At second stage liquid jet is becoming longer, because evaporation rate decreases due to decrease of temperature. But combustion of fuel vapor begins which brings to increase of heat flux to droplets and accelerates evaporation. The length of the liquid jet decreases again and remains constant slightly oscillating.  相似文献   

17.
粉末燃料冲压发动机研究进展   总被引:2,自引:0,他引:2  
粉末燃料冲压发动机采用高能金属或硼粉为燃料,兼具液体燃料冲压发动机推力可调、比冲高及固体火箭冲压发动机安全可靠、结构简单等优点,尤其是固体/粉末或液体/粉末燃料组合冲压发动机,粉末燃料的加入不仅可大幅提高传统冲压发动机的比冲等性能,还能改善并增加其原有功能,是极具发展潜力的新一代导弹动力装置之一。针对粉末燃料冲压发动机及其相关研究领域的发展现状进行了概述分析,并以此梳理出粉末燃料供给、发动机燃烧组织、发动机点火等粉末燃料冲压发动机主要关键技术,同时对发动机技术提出了高性能粉末燃料研究、冲压空气作为驱动流化气可行性研究、发动机快速响应和环境适应潜力及工作可靠性研究等几点研究展望。通过对粉末燃料冲压发动机相关研究技术进行综述梳理,明确了其研究的重点和难点,为发展高性能冲压发动机提供了一定参考。  相似文献   

18.
液体火箭发动机气动谐振点火技术的研究   总被引:7,自引:1,他引:7  
基于对液体火箭发动机重复多次可靠起动的要求,气动谐振管的热效应可用来形成高温高能的点火源,对氢氧液体火箭发动机,研制了同轴氢氧谐振点火器,对包括氢氧推进剂的所有非自然液体火箭发动机研究了氦气谐振热表面点火器,研究结果表明这种新型的气动谐振点火技术是结构简单,高可靠性,无毒,无污染的非电钝感点火技术,对于重复多次起动的液体火箭发动机有着诱人的应用前景。  相似文献   

19.
航天器返回舱再入过程中,高马赫数造成激波层内气体温度急剧升高,由此导致的化学非平衡效应对返回舱气动特性将产生显著影响。而飞行高度和速度的变化影响着化学非平衡过程,进而改变对飞行器气动特性的影响程度。文章通过求解三维Navier-Stokes流体动力学方程,利用耦合化学反应动力学模型对返回舱再入开展数值研究与机理分析,获得量热完全气体模型和化学非平衡气体模型的气动力预测值,分析飞行条件变化时化学非平衡效应对气动特性的影响规律。根据Apollo返回舱的AS-202飞行试验数据验证了计算模型与数值方法。对返回舱的模拟结果表明,高度不变、马赫数增大时,完全气体模型的气动特性预测值不变,化学非平衡效应影响下的轴向力系数、法向力系数和俯仰力矩系数与完全气体预测值的偏差均增大,化学非平衡效应增强;马赫数不变、高度增大时,化学非平衡效应造成的气动力预测值偏差也增大,配平攻角差值略有增加,化学非平衡效应同样增强。机理分析发现,飞行条件变化所造成的化学非平衡流场和压力分布变化是影响气动力变化的主要原因。  相似文献   

20.
HRM code for the simulation of N2O/HTPB hybrid rocket motor operation and scale effect analysis has been developed. This code can be used to calculate motor thrust and distributions of physical properties inside the combustion chamber and nozzle during the operational phase by solving the unsteady Navier–Stokes equations using a corrected compressible difference scheme and a two-step, five species combustion model. A dynamic fuel surface regression technique and a two-step calculation method together with the gas–solid coupling are applied in the calculation of fuel regression and the determination of combustion chamber wall profile as fuel regresses. Both the calculated motor thrust from start-up to shut-down mode and the combustion chamber wall profile after motor operation are in good agreements with experimental data. The fuel regression rate equation and the relation between fuel regression rate and axial distance have been derived. Analysis of results suggests improvements in combustion performance to the current hybrid rocket motor design and explains scale effects in the variation of fuel regression rate with combustion chamber diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号