首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the results of developing of physical and mathematical model making it possible to take into account the effect of droplets non-uniformity in space and size distribution on ignition conditions for fuel sprays. The influence of condensed phase volume fraction on ignition and combustion of sprays was studied, physical and mathematical models for multi-phase flows, mixture formation and combustion of liquid fuels based on solving Navier–Stokes equations for gas phase accounting for thermal and mechanical interaction with poly-dispersed droplets array. The problems of particulate phase dynamics are regarded accounting for the interaction with gas phase atomization, evaporation and combustion.It was shown that depending on droplet size distribution and aerosol cloud density different flow scenarios were possible.Several ignition zones could be formed behind incident shock wave depending on mixture properties and initiation parameters. The possibility of numerical simulation permitting variation of definite parameters only made it possible to explain this fact.  相似文献   

2.
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's “BUK” power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ~800 km orbit. The US’ SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90–96 wt%) and operated at a reactor exit temperature of 833–973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (~0.5 kWe and ~1 year for SNAP-10A, <3.0 kWe and <6 months for BUK, and ~5.5 kWe and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ~4.5 months, were boosted into ~800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000–3000 km orbits would generate significantly more power of 10's to 100's kWe for 5–10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.  相似文献   

3.
For most liquid-fueled combustion systems the behavior of the fuel as it is introduced to the combustion zone, often by spray injection, will have a significant impact on combustion. The subsequent combustion may be affected to a considerable degree by the initial spread of the liquid, break-up of larger fuel sheets and droplets into droplets of various sizes, droplet vaporization, and diffusion of gaseous fuel. Among the many factors which affect spray break-up and droplet vaporization are the environmental conditions into which the spray is introduced. For both diesel engines and rockets the environment pressure and temperature may be above the critical pressure and temperature of the injected fuel. In a compression-ignition internal combustion engine, the environment consists primarily of air, at pressures from 20 to 100 atmospheres and temperatures ranging from 900 to 1500 K. Even higher pressures are encountered in turbocharged diesels. A typical diesel reference fuel, dodecane, has a thermodynamic critical pressure of about 17 atmospheres, and a critical temperature of 600 K. Fuel is injected into a diesel engine environment in which ambient pressures exceed the critical pressure. While droplet temperatures are subcritical at first, they may rise to the critical temperature or higher.This paper will survey current understanding of supercritical pressure droplet vaporization. Specifically, the topics covered will include: liquid phase behavior; vapor phase behavior; thermodynamic and transport properties; droplet distribution and break-up; micro-explosions; and effects of microgravity.  相似文献   

4.
In the present study we investigate steady-state combustion of a liquid fuel droplet in the atmosphere of oxidizer under the condition of non-equilibrium evaporation from the surface.Utilizing the fact that chemical interactions of fuel with oxidizer involve a chain mechanism or several reaction stages, we transform the Shvab-Zel'dovich method so as to obtain exact analytical solution accounting for the possibility of several chain reactions.The obtained results show that this method is effective for solving the combustion problem and allow to define the values of parameters in gas around the droplet more accurately than the original method having taken into account one brutto-reaction.  相似文献   

5.
The present paper describes thrust measurement results for an arcjet thruster using Dimethyl ether (DME) as the propellant. DME is an ether compound and can be stored as a liquid due to its relatively low freezing point and preferable vapor pressure. The thruster successfully produced high-voltage mode at DME mass flow rates above 30 mg/s, whereas it yielded low-voltage mode below 30 mg/s. Thrust measurements yielded a thrust of 0.15 N and a specific impulse of 270 s at a mass flow rate of 60 mg/s with a discharge power of 1300 W. The DME arcjet thruster was comparable to a conventional one for thrust and discharge power.  相似文献   

6.
利用直流撞击式喷注器组织燃烧的发动机推力室喉部材料耐温极限制约了发动机燃烧效率提升,一种新型高性能直流冷壁式喷注器可以解决这一问题,为了指导这种新型喷注器的设计,从射流撞击雾化实验出发,探索了圆射流撞壁雾化规律。采用高速摄影捕获溅射雾化场整体形态,利用收集法测量溅射雾化率,选用PDA和PIV分别测量溅射液滴粒径及速度矢量。研究结果表明:射流撞壁后存在溅射,溅射液滴局部呈现螺旋状,液滴粒径为几十微米量级,溅射雾化率随撞击距离的变化规律可分为4个典型阶段:初始段、发展段、稳定段、衰减段,湍流动能为溅射雾化率的决定因素。  相似文献   

7.
李鹏飞  雷凡培  周立新  王凯 《宇航学报》2018,39(10):1157-1166
分别基于RK、SRK和PR等不同真实流体状态方程(EoS)建立了包含亚临界和超临界两种不同机制的瞬态液滴高压蒸发模型。针对我国新一代高压补燃液氧/煤油发动机,对煤油液滴在高压N 2 环境下的蒸发过程进行数值研究,重点分析了不同状态方程对N 2 -C 12 H 26 二元系统高压气液相平衡,及进一步对煤油液滴高压蒸发计算的影响。结果表明:对液滴蒸发速率影响最大的参数是液滴表面蒸气质量分数,而对该参数影响最大的则是所选取的状态方程。基于SRK和PR EoSs的高压气液相平衡及液滴高压蒸发计算结果均与试验数据符合较好,可正确描述液滴高压蒸发特性;而基于RK EoS的相平衡计算结果显著高估液滴表面蒸气质量分数和环境气体溶解度,并低估临界混合温度和偏摩尔相变热,进而在亚临界蒸发状态下高估蒸发速率,在超临界蒸发状态下低估蒸发速率。另外,基于RK EoS的计算中液滴发生跨临界转变所需的环境温度显著低于基于SRK和PR EoSs的。  相似文献   

8.
A mathematical model for the non-equilibrium combustion of droplets in rocket engines is developed. This model allows to determine the divergence of combustion rate for the equilibrium and non-equilibrium model. Criterion for droplet combustion deviation from equilibrium is introduced. It grows decreasing droplet radius, accommodation coefficient, temperature and decreases on decreasing diffusion coefficient. Also divergence from equilibrium increases on reduction of droplet radius.Droplet burning time essentially increases under non-equilibrium conditions. Comparison of theoretical and experimental data shows that to have adequate solution for small droplets it is necessary to use the non-equilibrium model.  相似文献   

9.
《Acta Astronautica》2007,60(10-11):939-945
The NASA/JSC sodium potassium (NaK) RORSAT coolant source and propagation model has been extended to 1 mm in diameter via a size distribution, which is an inverse power law fit that has been modified to damp out in the large size regime. This function matches the observed Haystack NaK population down to diameters of about 6 mm. The extrapolated function takes the population to arbitrarily small sizes all the while retaining the mass dominance of the 1–3 cm droplets that is observed in the Haystack data. This result is physically satisfying since the mechanism of NaK ejection appears to be a nonviolent release at low relative velocities. We propose that any NaK particles smaller than about 1 mm that exist would not be due to that mechanism. Instead, we show that such a population could be the result of subsequent collisions of NaK droplets with larger resident space objects and the micrometeoroid population. Our preliminary analysis shows that collisions between these populations are likely in the time period of 1980 through present-day. Though the result of such collisions is generally unknown it is probable that some ejecta of NaK enter the low Earth orbit (LEO) environment as a result. It is these secondary NaK droplets/particles that we contend are the likely impactors noted on returned surfaces.  相似文献   

10.
高速气流场燃油雾化液滴分布数值研究   总被引:2,自引:0,他引:2  
针对亚燃冲压发动机燃烧室内部流动特点,结合二元稳定器试验台高速气流场燃油雾化特性试验,建立试验件三维模型并对其喷雾两相流动进行数值模拟。主要研究了来流马赫数以及喷嘴条件变化时燃油雾化液滴与油气比的分布。分析认为,来流马赫数的增加使得雾化特征角缩小,可同时改善燃油蒸发并获得更加均匀的油气比分布。随着供油压力的提高,离心式与直流式喷嘴雾化特征角均增大,但供油压力不是影响直流喷嘴雾化锥角的主要因素。计算结果与试验结果对比定性符合良好,定量误差范围可以接受,验证了计算模型与计算方法的正确性,所得到的结果可应用于工程设计。  相似文献   

11.
An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.  相似文献   

12.
林森  周进  刘昌国 《上海航天》2007,24(6):39-43
在考虑N2O4/一甲基肼(MMH)自燃推进剂雾化、蒸发和化学反应过程的条件下,采用贴体网格系统和耦合显式求解算法,仿真计算了小推力液体发动机不同喷嘴设计对推进剂的蒸发、混合燃烧、推力室内流场和燃烧室效率的影响。仿真结果与高空热试车数据基本一致。所用模型合理,具一定的参考价值。  相似文献   

13.
A new and innovative type of gridded ion thruster, the “Dual-Stage 4-Grid” or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed.A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a “medium-term” SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific impulse is lower at 3500 s which is well within conventional gridded ion thruster capability.  相似文献   

14.
Long-term sensitivity of human cells to reduced gravity has been supposed since the first Apollo missions and was demonstrated during several space missions in the past. However, little information is available on primary and rapid gravi-responsive elements in mammalian cells. In search of rapid-responsive molecular alterations in mammalian cells, short-term microgravity provided by parabolic flight maneuvers is an ideal way to elucidate such initial and primary effects. Modern biomedical research at the cellular and molecular level requires frequent repetition of experiments that are usually performed in sequences of experiments and analyses. Therefore, a research platform on Earth providing frequent, easy and repeated access to real microgravity for cell culture experiments is strongly desired. For this reason, we developed a research platform onboard the military fighter jet aircraft Northrop F-5E “Tiger II”. The experimental system consists of a programmable and automatically operated system composed of six individual experiment modules, placed in the front compartment, which work completely independent of the aircraft systems. Signal transduction pathways in cultured human cells can be investigated after the addition of an activator solution at the onset of microgravity and a fixative or lysis buffer after termination of microgravity. Before the beginning of a regular military training flight, a parabolic maneuver was executed. After a 1 g control phase, the parabolic maneuver starts at 13,000 ft and at Mach 0.99 airspeed, where a 22 s climb with an acceleration of 2.5g is initiated, following a free-fall ballistic Keplerian trajectory lasting 45 s with an apogee of 27,000 ft at Mach 0.4 airspeed. Temperature, pressure and acceleration are monitored constantly during the entire flight. Cells and activator solutions are kept at 37 °C during the entire experiment until the fixative has been added. The parabolic flight profile provides up to 45 s of microgravity at a quality of 0.05g in all axes. Access time is 30 min before take-off; retrieval time is 30 min after landing. We conclude that using military fighter jets for microgravity research is a valuable tool for frequent and repeated cell culture experiments and therefore for state-of-the art method of biomedical research.  相似文献   

15.
On 14 May 2009 the European Space Agency launched 2 space observatories: Herschel (with a 3.5 m mirror it is the largest space telescope ever) will collect long-wavelength infrared radiation and will be the only space observatory to cover the spectral range from far-infrared to sub-millimetre wavelengths, and Planck will look back at the dawn of time, close to the Big Bang, and will examine the Cosmic Microwave Background (CMB) radiation to a sensitivity, angular resolution and frequency range never achieved before. This paper will present the Flight Dynamics, mission analysis challenges and flight results from the first 3 months of these missions.Both satellites were launched on the same Ariane 5 and travelled to the L2 Lagrange point of the sun–earth system 1.5 million km from the earth in the opposite direction of the sun. There they were injected to a quasi-halo orbit (Herschel) with the dimension of typically 750,000 km×450,000 km, and a Lissajous orbit (Planck) of 300,000 km×300,000 km.In order to reach these Lissajous orbits it is mandatory to perform large trajectory correction manoeuvres during the first days of the mission. Herschel had its main manoeuvres on the first day. Planck had to be navigated on the first day and by a mid-course correction manoeuvre, the L2 orbit insertion manoeuvre was planned on day 50. If these slots were missed, fuel penalties would rapidly increase.This posed a heavy load on the operations teams because both spacecrafts have to be thoroughly checked out and put into the correct modes of their attitude control systems during the first hours after launch.The sequence of events will be presented and explained and the orbit determination results as well as the manoeuvre planning will be emphasised.  相似文献   

16.
《Acta Astronautica》2008,62(11-12):995-1001
A mission to the surface of Venus would have high scientific value, but most electronic devices and sensors cannot operate at the 450 °C ambient surface temperature of Venus. Power and cooling systems were analyzed for Venus surface operation. A radioisotope power and cooling system was designed to provide electrical power for a probe operating on the surface of Venus. For a mission duration of substantial length, the use of thermal mass to maintain an operable temperature range is likely impractical, and active refrigeration may be required to keep components at a temperature below ambient. Due to the high thermal convection of the high-density atmosphere, the heat rejection temperature was assumed to be at a 500 °C radiator temperature, 50 °C above ambient. The radioisotope Stirling power converter designed produces a thermodynamic power output capacity of 478.1 W, with a cooling power of 100 W. The overall efficiency is calculated to be 23.36%. The mass of the power converter is estimated at approximately 21.6 kg.  相似文献   

17.
超声速气流中,燃料与来流空气的高效混合是燃烧室实现点火、稳焰及高效燃烧组织的前提。国内外研究者已对比研究了不同壁面孔型对超声速气流中喷注、混合特性的影响,相比于最常见的圆形喷孔,菱形、楔形-半圆、箭形及针形等喷孔用于超声速气流燃料喷注时,不仅有利于降低喷孔前缘边界层的分离,而且也有利于提升射流穿透深度;相比于单孔喷注,组合型喷孔能进一步增强燃料与来流空气在射流远场的混合效果。通过综述各型喷孔的喷注特性,分析提出了适用于超声速燃烧组织的壁面喷注孔型及其工程应用条件。  相似文献   

18.
马溢清  于邵祯 《宇航学报》2016,37(5):586-599
针对火箭发动机尾焰注水流场,组织并实施了火箭发动机系留点火及燃气流场注水降温缩比试验,研究了燃气冲击射流流场和注水作用下两相流场的分布状态以及降温效果。并通过研究在高温高速对流冲击作用下气液两相流的传热和传质理论,在Mixture多相流模型的基础上添加质量和能量源项,建立了多组分气液两相流非定常数值计算模型,通过对比试验结论,结果表明:所建立的数值计算模型具有较高的计算精度和可靠性,能够准确地反映物理现象。利用数值计算模型研究了注水后燃气、液态水和水蒸气三种主要组分在流场中的组成,通过与自由射流对比得到了注水燃气流场的包络线长度与宽度变化,注水对燃气流场降温效果显著。  相似文献   

19.
This paper presents the results of a study on design considerations for a 100 W radioisotope thermo-electric generator (RTG). Special emphasis has been put on designing a modular, multi-purpose system with high overall TRL levels and making full use of the extensive Russian heritage in the design of radioisotope power systems. The modular approach allowed insight into the scaling of such RTGs covering the electric power range from 50 to 200 We (EoL). The retained concept is based on a modular thermal block structure, a radiative inner-RTG heat transfer and using a two-stage thermo-electric conversion system.  相似文献   

20.
超声速横向气流中喷雾的数值模拟   总被引:3,自引:0,他引:3  
刘静  徐旭 《火箭推进》2006,32(5):32-36
对超声速横向气流中的喷雾过程进行了数值模拟,采用二维N-S方程计算气相,应用一次雾化模型和二次雾化模型模拟了喷雾雾化过程,并与实验测量结果进行了对比。研究了湍流度和附面层厚度对液雾穿透深度的影响,发现湍流度和附面层厚度并不是主要的影响因素,认为雾化模型是影响液雾穿透深度的关键因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号