首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, the small signal analysis of the LCC-type parallel resonant converter (LCC-PRC) operating in the continuous conduction mode is given. This analysis is based on both the state-plane diagram, which has been successfully used to obtain the steady state response for resonant converters, and the Taylor series expansion. Applying perturbation directly to the steady state trajectory, a discrete small signal model for the converter can be derived in terns of the input voltage, switching frequency, and the converter state variables. Based on this analysis, closed-loop form solutions for the input-to-output and control-to-output transfer functions are derived. It is shown that the theoretical and computer simulation results are in full agreement  相似文献   

2.
When a parallel resonant tank is excited by a bipolar current pulse train a sinusoidal voltage develops across the tank whose amplitude depends on the duty cycle of the pulse train. An isolated secondary can be derived by applying the tank voltage to an isolation transformer whose magnetizing inductance acts as the resonant inductor of the tank circuit. A dc output voltage is obtained after rectification and filtering of the sinusoidal secondary voltage and regulation is achieved by controlling the duty cycle of the pulse train. The sinusoidal nature of the voltage across the isolation transformer alleviates some of the noise problem associated with parasitic capacitances of an isolation transformer when operated with square voltage waveform. In this work the dc and small-signal analysis of the converter is given and an equivalent small-signal circuit model is derived. Experimental results which confirm the validity of the model are presented.  相似文献   

3.
A simple nonlinear discrete-time dynamic model for the series resonant dc-dc converter is derived using approximations appropriate to most power converters. This model is useful for the dynamic simulation of a series resonant converter using only a desktop calculator. The model is compared with a laboratory converter for a large transient event.  相似文献   

4.
基于DPS控制的双向全桥直流变换器的建模   总被引:1,自引:1,他引:0       下载免费PDF全文
为方便双向全桥直流变换器的稳定性分析以及闭环控制器的设计,利用广义状态空间平均法对工作在双重移相控制方式下的双向全桥直流变换器进行了建模研究,得到了系统的大信号模型,通过线性化处理,得到系统小信号模型,并根据小信号模型进行了控制器设计。利用Matlab仿真验证所建立模型的准确性以及闭环系统的稳定性,仿真结果表明,小信号模型能准确跟随系统输出,且闭环系统符合GJB 181B要求。  相似文献   

5.
A method for calculating the harmonic components of the currents and voltages in a parallel-loaded resonant converter using frequency-domain techniques is presented. The converter is divided into an inverter section and a rectifier section. A harmonic model is developed for the resonant converter in which the rectifier section is treated as a voltage-dependent current sink. All voltages and currents in this model are represented by a Fourier series. The unknown coefficients in all Fourier series are calculated by using the harmonic model and Kirchhoff's laws. Because of the nonlinear nature of the rectifier section, an iterative technique must be utilized to find the unknown Fourier coefficients  相似文献   

6.
Sundstrand Advanced Technology Corporation The current injection equivalent circuit approach (CIECA) to modeling switching converter power stages is extended to model the current programmed converter power stages operating in fixed frequency, continuous inductor conduction mode. To demonstrate the method, modeling is carried out for the buck, boost, and buckboost converters to obtain small-signal linear equivalent circuit models which represent both input and output properties. The results of these analyses are presented in the form of linear equivalent circuit models as well as transfer functions. Though current programmed converters exhibit single-pole response, the addition of artificial ramp changes converters to exhibit well damped two-pole response. This has been investigated for the first time using CIECA. The results of these analyses are presented in the form of linear equivalent circuit models as well as transfer functions.  相似文献   

7.
Because of their reduced switching losses, allowing a higher operating frequency, dc-to-dc resonant converters have been used extensively in the design of smaller size and lighter weight power supplies. The steady state and dynamic behavior of both the conventional series and parallel resonant converters have been thoroughly analyzed and small-signal models around given nominal operating points have been obtained. These models have been used in the past to design controllers that attempted to keep the output voltage constant in the presence of input perturbations. However, these controllers did not take into account either load or components variations, and this could lead to instability in the face of component or load changes. Moreover, prediction of the frequency range for stability was done a posteriori, either experimentally or by a trial and error approach In this paper we use μ-synthesis to design a robust controller for a series resonant converter (SRC). In addition to robust stability the design objectives include rejection of disturbances at the converter input while keeping the control input and the settling time within values compatible with a practical implementation  相似文献   

8.
A constant-frequency diode-clamped series resonant converter (CFCSRC) is proposed as a solution to problems associated with frequency-controlled resonant converters. This converter has two resonant frequencies, and control is achieved by varying the relative time spent at each switching frequency. Two zero-current-switching (ZCS) modes are examined and plotted in the output plane. An equation is given for the boundary between the two ZCS modes, as well as an expression for the boundary between ZCS and non-ZCS operation; both are plotted in the output plane. The output equation for the main mode is shown to be hyperbolic. Converter peak voltages limited to the input voltages, and peak currents are less than those of the frequency-controlled clamped series resonant converter over a large operating range. Data from a prototype converter are compared with theoretical data and are shown to be in good agreement with the theoretical model  相似文献   

9.
分析了高于谐振频率工作的串联输出谐振变换器的工作模式,采用状态变量法计算获得了若干描述稳态工作的特性曲线,为分析和设计这种变换器提供了基础  相似文献   

10.
Signal flow graph (SFG) nonlinear modeling approach is well known for modeling dc-dc converters. However, all possible SFGs of a given dc-dc converter system will not yield the generalized graph. A systematic procedure and guidelines for developing unified flow graph models of the dc-dc boost converters, from which complete behavior can be determined is presented. Usefulness of the proposed method is demonstrated through examples. As an illustration a 2-cell cascade boost and interleaved boost converter systems are taken as examples. Derivation of large, small-signal and steady-state models from generalized flow graph is also demonstrated. Large-signal model is developed and programmed in TUTSIM simulator. Large-signal, responses against supply and load disturbances are obtained. Experimental observations are provided to validate the proposed algorithm.  相似文献   

11.
A frequency-domain steady-state analysis is given for a series-parallel resonant converter (SPRC) operating in the continuous conduction mode (CCM) using Fourier series techniques. Equations for performance parameters are derived under steady-state conditions to provide simple design tools. The topology of the SPRC combines the advantageous properties of both the series resonant converter (SRC) and the parallel resonant converter (PRC). The key results of the work are: a novel half-wave rectifier SPRC, conditions for obtaining high part-load efficiency; and several boundary frequencies and limiting conditions such as the capacitive/inductive load boundary and open-circuit and short-circuit cases. Experimental results measured for an 80-W converter above the resonance at different load resistances and input voltages show excellent agreement with the theoretical performance predicted by the equations  相似文献   

12.
A new ac/dc 3-/spl phi/ single-stage converter is proposed integrating a 3-/spl phi/ discontinuous current mode (DCM) boost with a dc/dc fixed frequency series resonant converter (SRC). This converter has the following features: natural power factor correction, soft switching, high-frequency (HF) transformer isolation with the series resonant tank operating in above resonance mode, etc. A new complementary gating control scheme is used for simultaneous control of boost converter and the SRC. Modes of operation are presented and analyzed. Based on the analysis, design curves are obtained. An optimum design is given and a design example is presented. Results obtained from SPICE simulation for the designed converter are given to verify the performance of the proposed converter for varying load as well as line voltage. Experimental results obtained from a laboratory prototype converter are presented to verify the theory.  相似文献   

13.
The analysis of resonant converters including the capacitance of the switches is presented. New dc characteristics are obtained for the series, parallel, and series-parallel resonant converters (SPRC). The operating regions where the converters operate with zero-voltage switching (ZVS) are determined as a function of the switch capacitance. The more pronounced effect can be seen in the series resonant converter (SRC), while the parallel resonant converter (PRC) is the most insensitive. The results of the analysis have been verified on an experimental prototype  相似文献   

14.
A small-signal model for multiple-output forward converter with current-mode control is derived. The model can accurately predict the small-signal characteristics for current-mode control. It is observed that the power stage pole-zero relative positions, which are critical to the compensator design, are not affected by introducing current-mode control  相似文献   

15.
Analysis based on the state-plane diagram is given for series resonant converters operating in the frequency range 0.5 ? fs/fo ? 1.0. When the voltages and currents in the converter are normalized, design parameters take on special geometric meanings in the normalized state diagram. Examples of converter design using graphical methods are given for the cases of ? and ? control. Control characteristics of the converter operating in the continuous conduction mode are derived. The concept of the energy reflection coefficient is introduced as a measure of power transfer efficiency in the converter design.  相似文献   

16.
A series-parallel resonant converter employing (LC)(LC)-type tank circuit operating in lagging power factor (PF) mode is presented and analyzed using complex ac circuit analysis. Design curves are obtained and the converter is optimized under certain constraints. Detailed Space Integrated Control Experiment (SPICE) simulation results are presented to evaluate the performance of the designed converter under varying load conditions. Results obtained from an experimental converter are also presented. The results obtained from the theory, SPICE simulation, and the experimental converter are compared. The proposed converter has high efficiency from full load to very light load (<10%). Switching frequency variation required for a wide change in the load (near load open circuit to full load) is narrow compared with the series resonant converter (SRC)  相似文献   

17.
A fixed frequency LCL-type series resonant converter (SRC) which uses an inductive output filter is proposed. Steady-state analysis of the converter is presented using complex ac circuit analysis. Based on the analysis, a simple design procedure is given. Detailed space integrated control experiment (SPICE) simulation results are presented to evaluate the performance of the designed converter under varying load and supply voltage conditions. Also, detailed experimental results obtained from a metal-oxide-semiconductor field-effect transistor (MOSFET) based 500 W converter are presented to verify the analysis and SPICE simulation results. The results obtained from the analysis, SPICE simulation and the experimental converter are compared. The proposed converter requires a narrow variation in pulsewidth while maintaining lagging power factor mode of operation for a very wide variation in the load as well as supply voltage  相似文献   

18.
The results of a previous discrete-time model of the series resonant dc-dc converter are reviewed and from these a small signal dynamic model is derived. This model is valid for low frequencies and is based on the modulation of the diode conduction angle for control. The basic converter is modeled separately from its output filter to facilitate the use of these results for design purposes. Experimental results are presented.  相似文献   

19.
An efficient and practical method for steady-state design of an LLC-type parallel resonant dc/dc converter (LLC-PRC) is presented. In general, the output characteristic curves of LLC-PRC can be obtained by multiplying the output curves of the LC-type parallel resonant converter (LC-PRC) by a ratio of the parallel and series inductances. The peak voltage and current stresses on the resonant elements also depend on the same ratio. The LLC-PRC with a filter inductor is examined for two conduction modes, continuous and discontinuous capacitor voltage conduction modes, to show the effect of the inductance ratio. A means to use the derived equations to obtain the zero current switching (ZCS) is given. Also, a design procedure, along with design examples, is given to illustrate the use of the equations and characteristic curves. An experimental LLC-PRC is built to ensure the validity of the equations and design examples  相似文献   

20.
A circuit-oriented approach to the analysis of pulsewidth modulation (PWM) converters is presented. This method relies on the identification of a three-terminal nonlinear device, called the PWM switch, which consists of only the active and passive switches in a PWM converter. Once the invariant properties of the PWM switch are determined, its average equivalent circuit model can be derived. This model is versatile enough to easily account for storage-time modulation of bipolar junction transistor(s) (BJTs); the DC- and small-signal characteristics of a large class of PWM converters can then be contained by a simply replacing the PWM switch with its equivalent circuit model. The methodology is very similar to linear amplifier circuit analysis, whereby the transistor is replaced by its equivalent circuit model  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号