首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Venus remains one of the great unexplored planets in our solar system, with key questions remaining on the evolution of its atmosphere and climate, its volatile cycles, and the thermal and magmatic evolution of its surface. One potential approach toward answering these questions is to fly a reconnaissance mission that uses a multi-mode radar in a near-circular, low-altitude orbit of ∼400 km and 60–70° inclination. This type of mission profile results in a total mission delta-V of ∼4.4 km/s. Aerobraking could provide a significant portion, potentially up to half, of this energy transfer, thereby permitting more mass to be allocated to the spacecraft and science payload or facilitating the use of smaller, cheaper launch vehicles.Aerobraking at Venus also provides additional science benefits through the measurement of upper atmospheric density (recovered from accelerometer data) and temperature values, especially near the terminator where temperature changes are abrupt and constant pressure levels drop dramatically in altitude from day to night.Scientifically rich, Venus is also an ideal location for implementing aerobraking techniques. Its thick lower atmosphere and slow planet rotation result in relatively more predictable atmospheric densities than Mars. The upper atmosphere (aerobraking altitudes) of Venus has a density variation of 8% compared to Mars' 30% variability. In general, most aerobraking missions try to minimize the duration of the aerobraking phase to keep costs down. These short phases have limited margin to account for contingencies. It is the stable and predictive nature of Venus' atmosphere that provides safer aerobraking opportunities.The nature of aerobraking at Venus provides ideal opportunities to demonstrate aerobraking enhancements and techniques yet to be used at Mars, such as flying a temperature corridor (versus a heat-rate corridor) and using a thermal-response surface algorithm and autonomous aerobraking, shifting many daily ground activities to onboard the spacecraft. A defined aerobraking temperature corridor, based on spacecraft component maximum temperatures, can be employed on a spacecraft specifically designed for aerobraking, and will predict subsequent aerobraking orbits and prescribe apoapsis propulsive maneuvers to maintain the spacecraft within its specified temperature limits. A spacecraft specifically designed for aerobraking in the Venus environment can provide a cost-effective platform for achieving these expanded science and technology goals.This paper discusses the scientific merits of a low-altitude, near-circular orbit at Venus, highlights the differences in aerobraking at Venus versus Mars, and presents design data using a flight system specifically designed for an aerobraking mission at Venus. Using aerobraking to achieve a low altitude orbit at Venus may pave the way for various technology demonstrations, such as autonomous aerobraking techniques and/or new science measurements like a multi-mode, synthetic aperture radar capable of altimetry and radiometry with performance that is significantly more capable than Magellan.  相似文献   

2.
The first European mission to Venus (Venus Express) is described. It is based on a repeated use of the Mars Express design with minor modifications dictated in the main by more severe thermal environment at Venus. The main scientific task of the mission is global exploration of the Venusian atmosphere, circumplanetary plasma, and the planet surface from an orbiting spacecraft. The Venus Express payload includes seven instruments, five of which are inherited from the missions Mars Express and Rosetta. Two instruments were specially designed for Venus Express. The advantages of Venus Express in comparison with previous missions are in using advanced instrumentation and methods of remote sounding, as well as a spacecraft with a broad spectrum of capabilities of orbital observations.  相似文献   

3.
The Voyager Interstellar Mission   总被引:1,自引:0,他引:1  
The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed.  相似文献   

4.
Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles’ deployment was confirmed. After a successful cruise, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec. 7, 2010. The engine shut down before the planned reduction in speed to achieve. The spacecraft did not enter the Venus orbit but entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken and unusable. However, we have found an alternate way of achieving orbit by using only the reaction control system (RSC). We had adopted the alternate way for orbital maneuver and three minor maneuvers in Nov. 2011 were successfully done so that AKATSUKI would meet Venus in 2015. We are considering several scenarios for VOI using only RCS.  相似文献   

5.
The Pioneer Venus program consist of two spacecraft: an orbiter and a multiprobe. Both arrived at Venus in early December 1978. The orbiter collected data on the upper atmosphere and fields and particles and sensed the clouds and surface remotely from a 75° inclined orbit. The multiprobe consisted of a bus, three small probes, and a large probe. All five objects entered the Venus atmosphere and transmitted data on its characteristics directly to Earth while descending to the surface. The development of these spacecraft required the solution of many difficult and unique technique problems.  相似文献   

6.
Europa Lander     
《Acta Astronautica》2003,52(2-6):253-258
A Europa Lander mission has been assigned high priority for the post-2005 time frame in NASA's Space Science Enterprise Strategic Plan. Europa is one of the most scientifically interesting objects in the solar system because of the strong possibility that a liquid water ocean exists underneath its ice-covered surface. The primary scientific goals of the proposed Europa Lander mission are to characterize the surface material from a recent outflow and look for evidence of pre-biotic and possibly biotic chemistry. The baseline mission concept involves landing a single spacecraft on the surface of Europa with the capability to acquire samples of material, perform detailed chemical analysis of the samples, and transmit the results to Earth. This paper provides a discussion of the benefits and status of the key spacecraft and instrument technologies needed to accomplish the science objectives. Also described are variations on the baseline concept including the addition of small auxiliary probes and an experimental ice penetration probe.  相似文献   

7.
《Acta Astronautica》2003,52(2-6):203-209
The spacecraft designed to support the ESA Mars Express mission and its science payloads is customized around an existing avionics well suited to environmental and operational constraints of deep-space interplanetary missions. The reuse of the avionics initially developed for the Rosetta cometary program thanks to an adequate ESA cornerstone program budget paves the way for affordable planetary missions.The costs and schedule benefits inherited from reuse of up-to-date avionics solutions validated in the frame of other programs allows to focus design and development efforts of a new mission over the specific areas which requires customization, such as spacecraft configuration and payload resources. This design approach, combined with the implementation of innovative development and management solutions have enabled to provide the Mars Express mission with an highly capable spacecraft for a remarkably low cost. The different spacecraft subsystems are all based on adequate design solutions. The development plan ensures an exhaustive spacecraft verification in order to perform the mission at minimum risk. New management schemes contribute to maintain the mission within its limited funding.Experience and heritage gained on this program will allow industry to propose to Scientists and Agencies high performance, low-cost solutions for the ambitious Mars Exploration Program of the forthcoming decade.  相似文献   

8.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008–2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974–1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20°S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012–2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.  相似文献   

9.
Rosetta was selected in November 1993 for the ESA Cornerstone 3 mission, to be launched in 2003, dedicated to the exploration of the small bodies of the solar system (asteroids and comets). Following this selection, the Rosetta mission and its spacecraft have been completely reviewed: this paper presents the studies performed the proposed mission and the resulting spacecraft design.

Three mission opportunities have been identified in 2003–2004, allowing rendezvous with a comet. From a single Ariane 5 launch, the transfer to the comet orbit will be supported by planetary gravity assists (two from Earth, one from Venus or Mars); during the transfer sequence, two asteroid fly-bys will occur, allowing first mission science phases. The comet rendezvous will occur 8–9 years after launch; Rosetta will orbit around the comet and the main science mission phase will take place up to the comet perihelion (1–2 years duration).

The spacecraft design is driven (i) by the communication scenario with the Earth and its equipment, (ii) by the autonomy requirements for the long cruise phases which are not supported by the ground stations, (iii) by the solar cells solar array for the electrical power supply and (iv) by the navigation scenario and sensors for cruise, target approach and rendezvous phases. These requirements will be developed and the satellite design will be presented.  相似文献   


10.
A mission to the surface of Venus would have high scientific value, but most electronic devices and sensors cannot operate at the 450 °C ambient surface temperature of Venus. Power and cooling systems were analyzed for Venus surface operation. A radioisotope power and cooling system was designed to provide electrical power for a probe operating on the surface of Venus. For a mission duration of substantial length, the use of thermal mass to maintain an operable temperature range is likely impractical, and active refrigeration may be required to keep components at a temperature below ambient. Due to the high thermal convection of the high-density atmosphere, the heat rejection temperature was assumed to be at a 500 °C radiator temperature, 50 °C above ambient. The radioisotope Stirling power converter designed produces a thermodynamic power output capacity of 478.1 W, with a cooling power of 100 W. The overall efficiency is calculated to be 23.36%. The mass of the power converter is estimated at approximately 21.6 kg.  相似文献   

11.
The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on evaluating techniques for exploring near-Earth asteroids (NEAs). It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of “far-field survey” approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of objectives developed by the science team. These objectives were based on review and discussion of previous related marine science research, including previous marine science saturation missions conducted at the Aquarius habitat. AUV data were used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the “near-field survey” approach that is expected to be performed by a Multi-Mission Space Exploration Vehicle (MMSEV) during a human mission to a NEA before extravehicular activities (EVAs) are conducted. In addition to the science objectives that were pursued, the NEEMO 15 traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the “near-field survey” in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crew members, tools, and equipment that could be used to perform these science objectives on a NEA. Specifically, the productivity and acceptability of simulated NEA exploration activities were systematically quantified and compared when operating with different combinations of crew sizes and exploration systems including MMSEVs, EVA jet packs, and EVA translation devices. Data from NEEMO 15 will be used in conjunction with data from software simulations, parametric analysis, other analog field tests, anchoring models, and integrated testing at Johnson Space Center to inform the evolving architectures and exploration systems being developed by the Human Spaceflight Architecture Team.  相似文献   

12.
《Acta Astronautica》2008,62(11-12):995-1001
A mission to the surface of Venus would have high scientific value, but most electronic devices and sensors cannot operate at the 450 °C ambient surface temperature of Venus. Power and cooling systems were analyzed for Venus surface operation. A radioisotope power and cooling system was designed to provide electrical power for a probe operating on the surface of Venus. For a mission duration of substantial length, the use of thermal mass to maintain an operable temperature range is likely impractical, and active refrigeration may be required to keep components at a temperature below ambient. Due to the high thermal convection of the high-density atmosphere, the heat rejection temperature was assumed to be at a 500 °C radiator temperature, 50 °C above ambient. The radioisotope Stirling power converter designed produces a thermodynamic power output capacity of 478.1 W, with a cooling power of 100 W. The overall efficiency is calculated to be 23.36%. The mass of the power converter is estimated at approximately 21.6 kg.  相似文献   

13.
Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.  相似文献   

14.
Aerobraking has previously been used to reduce the propellant required to deliver an orbiter to its desired final orbit. In principle, aerobraking should be possible around any target planet or moon having sufficient atmosphere to permit atmospheric drag to provide a portion of the mission ΔV, in lieu of supplying all of the required ΔV propulsively. The spacecraft is flown through the upper atmosphere of the target using multiple passes, ensuring that the dynamic pressure and thermal loads remain within the spacecraft's design parameters. NASA has successfully conducted aerobraking operations four times, once at Venus and three times at Mars. While aerobraking reduces the fuel required, it does so at the expense of time (typically 3–6 months), continuous Deep Space Network (DSN) coverage, and a large ground staff. These factors can result in aerobraking being a very expensive operational phase of the mission. However, aerobraking has matured to the point that much of the daily operation could potentially be performed autonomously onboard the spacecraft, thereby reducing the required ground support and attendant aerobraking related costs. To facilitate a lower-risk transition from ground processing to an autonomous capability, the NASA Engineering and Safety Center (NESC) has assembled a team of experts in aerobraking and interplanetary guidance and control to develop a high-fidelity, flight-like simulation. This simulation will be used to demonstrate the overall feasibility while exploring the potential for staff and DSN coverage reductions that autonomous aerobraking might provide. This paper reviews the various elements of autonomous aerobraking and presents an overview of the various models and algorithms that must be transformed from the current ground processing methodology to a flight-like environment. Additionally the high-fidelity flight software test bed, being developed from models used in a recent interplanetary mission, will be summarized.  相似文献   

15.
SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.  相似文献   

16.
张伟 《上海航天》2012,29(5):1-6
概括了深空探测的重要意义。根据金星在太阳系中的特殊地位、金星探测的科学意义及对技术创新的意义,以及金星是早期深空探测的重点,认为金星是深空探测的重要目标之一。分析了金星探测特有的创新技术、金星的特殊环境、最近距离的行星探测等意义。提出了一种金星探测器的方案设想,介绍了飞行过程、科学载荷配置和探测器构型,可作为未来金星探测器方案设计的参考。  相似文献   

17.
The Japan Aerospace Exploration Agency (JAXA) views the lunar lander SELENE-2 as the successor to the SELENE mission. In this presentation, the mission objectives of SELENE-2 are shown together with the present design status of the spacecraft. JAXA launched the Kaguya (SELENE) lunar orbiter in September 2007, and the spacecraft observed the Moon and a couple of small satellites using 15 instruments. As the next step in lunar exploration, the lunar lander SELENE-2 is being considered. SELENE-2 will land on the lunar surface and perform in-situ scientific observations, environmental investigations, and research for future lunar utilization including human activity. At the same time, it will demonstrate key technologies for lunar and planetary exploration such as precise and safe landing, surface mobility, and overnight survival. The lander will carry laser altimeters, image sensors, and landing radars for precise and safe landing. Landing legs and a precisely controlled propulsion system will also be developed. A rover is being designed to be able to travel over a wide area and observe featured terrain using scientific instruments. Since some of the instruments require long-term observation on the lunar surface, technology for night survival over more than 2 weeks needs to be considered. The SELENE-2 technologies are expected to be one of the stepping stones towards future Japanese human activities on the moon and to expand the possibilities for deep space science.  相似文献   

18.
With a maximum time of 12 days out of ground contact and a round-trip light time as high as 56 minutes, The Near Earth Asteroid Rendezvous (NEAR) spacecraft requires a moderate degree of onboard autonomy to react to faults and safe the spacecraft. Beyond the basic safing requirements, additional functions are carried out onboard. For example, on-board calculation of the Sun, Earth, asteroid, and spacecraft positions allow the spacecraft to autonomously orient itself for science and downlink operations. On-board autonomous momentum management during cruise relieves Mission Operations from planning, scheduling, and carrying out many manual momentum dumps. During development, additional operations, such as center-of-mass management during propulsive maneuvers and optical navigation were also considered for onboard autonomy on the NEAR spacecraft, but were not selected. The allocation of functions to onboard software or to ground operations involved tradeoffs such as development time for onboard software versus ground software, resource management, life cycle costs, and spacecraft safety.After two years of cruise operations, considerable experience with the NEAR autonomy system has accrued. The utility of some autonomous capabilities is greater than expected, others less so. Software uploads increased spacecraft autonomy in some cases, and the impact on Mission Operations can be assessed. Allocation of functions between spacecraft autonomy and ground operation during development of future missions can be improved by applying the lessons learned from the NEAR experience.  相似文献   

19.
《Acta Astronautica》1999,44(2-4):85-90
A robotic flyby mission to the planet Pluto is being planned for launch early in the next decade. The spacecraft will continue on out of the solar system in an almost radial direction traveling at about four AU per year and begin transiting the Kuiper Belt shortly after Pluto encounter. Recent discoveries and observations of Kuiper Belt objects have generated increased interest in the characteristics of these bodies. This paper examines the opportunities and requirements for extending the Pluto mission to include the search for, and encounters with, objects in the Kuiper Disk at 40+ AU. The trajectory and ΔV requirements will be presented. An automated, on-board sky survey will be proposed to inventory the Kuiper objects in the vicinity of the flight path and to identify which objects are candidates for altering the trajectory for a close flyby. A possible Kuiper object encounter science scenario will be described.  相似文献   

20.
The infrared spectrometry of Venus in the range 6–45 μm allows one to sound the middle atmosphere of Venus in the altitude range 55–100 km and its cloud layer. This experiment was carried out onboard the Soviet automatic interplanetary Venera-15 station, where the Fourier spectrometer for this spectral range was installed. The measurements have shown that the main component of the cloud layer at all measured latitudes in the northern hemisphere is concentrated sulfuric acid (75–85%). The vertical profiles of temperature and aerosol were reconstructed in a self-consistent manner: the three-dimensional fields of temperature and zonal wind in the altitude range 55–100 km and aerosol at altitudes 55–70 km have been obtained, as well as vertical SO2 profiles and H2O concentration in the upper cloud layer. The solar-related waves at isobaric levels in the fields of temperature, zonal wind, and aerosol were investigated. This experiment has shown the efficiency of the method for investigation of the Venusian atmosphere. The Planetary Fourier Spectrometer has the spectral interval 0.9–45 μm and a spectral resolution of 1.8 cm?1. It will allow one to sound the middle atmosphere (55–100 km) of Venus and its cloud layer on the dayside, as well as the lower atmosphere and the planetary surface on the night side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号