首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Moving target detection via airborne HRR phased array radar   总被引:1,自引:0,他引:1  
We study moving target detection in the presence of temporally and spatially correlated ground clutter for airborne high range resolution (HRR) phased array radar. We divide the HRR range profiles into large range segments to avoid the range migration problems that occur in the HRR radar data. Since each range segment contains a sequence of HRR range bins, no information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector autoregressive (VAR) filtering technique to suppress the ground clutter. Then a moving target detector based on a generalized likelihood ratio test (GLRT) detection strategy is derived. The detection threshold is determined according to the desired false alarm rate, which is made possible via an asymptotic statistical analysis. After the target Doppler frequency and spatial signature vectors are estimated from the VAR-filtered data as if a target were present, a simple detection variable is computed and compared with the detection threshold to render a decision on the presence of a target. Numerical results are provided to demonstrate the performance of the proposed moving target detection algorithm  相似文献   

3.
We present an algorithm for direction-of-arrival (DOA) tracking that allows operation below the ambiguity threshold of the direction-finding (DF) system. Using multiple target tracking techniques, the algorithm turns the most likely DOAs of each measurement into multiple potential tracks and then selects the true track as that with the maximum cumulative likelihood. The improvement offered by the algorithm, namely the extension of the ambiguity-free signal-to-noise ratio (SNR) domain, is demonstrated in several simulated experiments using several array structures, including a sparse array and a uniform linear array  相似文献   

4.
The impact of beam overlap on the probability of detection during a single scan of a phased-array volumetric scan radar is examined. Rectangular and triangular beam packing arrangements are considered. Beam positions near the beam most centered on the target are allowed to contribute to the detection process. The treatment of the impact of beam overlap on target detection for a phased array is consistent with the results that would be achieved by proper use of the search radar range equation  相似文献   

5.
Space-time adaptive processing (STAP) holds tremendous potential for the new generation airborne surveillance radar, in which the phased array antennas and pulse Doppler processing mode are adopted. A new STAP approach using the multiple-beam and multiple Doppler channels is presented here for airborne phased array radar. The approach with space-time multiple-beam (STMB) architecture is robust to array errors and has very low system degrees of freedom (DOFs). Hence, it has low sample support requirement and it is very suitable for the practical planar phased array radar under nonhomogeneous clutter environments. Meanwhile, a new nonhomogeneous detector (NHD) based on the correlation dimension (CD) is also proposed here, which is used as an effective method to screen tracing data prior to detection processing. It can further improve the performance of the STAP approach in the severely nonhomogeneous clutter environments. Therefore, a scheme that incorporates the correlation dimension nonhomogeneity detector (CD-NHD) with the STMB is recommended, which we term CD-NHD-STMB. The experimental simulation results indicate that: 1) the STMB processor is robust to array element error and has high performance under nonhomogeneous clutter environments; 2) the CD-NHD is also effective on the nonhomogeneous clutter. As a result, the CD-NHD-STMB scheme is robust to array element error and nonhomogeneous clutter, and therefore available for airborne phased array radar applications.  相似文献   

6.
MIMO radar: snake oil or good idea?   总被引:2,自引:0,他引:2  
MIMO communication is theoretically superior to conventional communication under certain conditions, and MIMO communication also appears to be practical and cost-effective in the real world for some applications. It is natural to suppose that the same is true for MIMO radar, but the situation is not so clear. Researchers claim many advantages of MIMO radar relative to phased array radars (e.g., better detection performance, better angular resolution, better angular measurement accuracy, improved robustness against RFI, ECM, multipath, etc.). We will evaluate such assertions from a system engineering viewpoint. In particular, there are serious trade-offs of MIMO vs. phased array radars relative to cost, system complexity, and risk considering numerous real world effects that are not included in most theoretical analyses. Moreover, in many cases one can achieve essentially the same radar system improvement with phased array radars using simpler, less expensive, and less risky algorithms. We evaluate roughly a dozen asserted advantages of MIMO radar relative to phased arrays.  相似文献   

7.
Theory of Adaptive Radar   总被引:16,自引:0,他引:16  
This paper reviews the principles of adaptive radar in which both the spatial (antenna pattern) and temporal (Doppler filter) responses of the system are controlled adaptively. An adaptive system senses the angular-Doppler distribution of the external noise field and adjusts a set of radar parameters for maximum signal-to-interference ratio and optimum detection performance. A gradient technique for control of the radar array/filter weights is described and shown to generate weights which asymptotically approach optimum values. Simulation results illustrate the convergence rate of adaptive systems and the performance improvement which can be achieved.  相似文献   

8.
The potential of airborne radar to provide pictorial displays as an aid to low approach has stimulated invention of several aircraft approach systems. Early developments are reviewed briefly, and an experiment in producing and flight testing a two-dimensional, range and azimuth, pictorial radar display is described. The monopulse radar equipment and a monopulse display improvement (MDI) technique used in the flight test to enhance the B-scope display are also described in some detail. Representative radar scope photographs are used to illustrate the display available in the aircraft.  相似文献   

9.
A new retrodirective antenna-based search radar system has been introduced. The suggested system uses a noise correlation technique to detect the presence and the direction of the target. Simulation and analytical results show an order of magnitude improvement in acquisition time of the radar when compared with a phased array antenna-based radar system with the same specifications, except transmit power. To the best knowledge of the authors, no radar of a comparable acquisition time has been designed to this date. Power versus acquisition time tradeoff has been compared with a phased array radar for evaluating performance of the system. The radar is self-tracking due to retrodirectivity of the antenna array, and is much easier to implement, as it does not require any phase shifters etc.  相似文献   

10.
A general analysis of the effect of an arbitrary power-series nonlinear amplifier followed by a coherent mixing device on signal-to-noise ratio (SNR) is performed. An expression is derived for the improvement factor which is defined as the logarithm of the ratio of the output SNR to the input SNR. This expression is applicable to the coherent amplitude detector and phase locked loop as well as noncoherent amplifier by appropriate selections of the detection angle. Moreover, the improvement factor can be obtained for noise with an arbitrary amplitude distribution. To demonstrate the applicability of this analysis, the improvement factors of the nonlinear amplifiers such as a power-law amplifier and a power-series amplifier with positive and negative discriminations are numerically calculated for the cases where the input noise amplitude distributions are Rician and triangular.  相似文献   

11.
A two-stage algorithm for landmine detection with a ground penetrating radar (GPR) system is described. First, 3-D data sets are processed using a computationally inexpensive pre-screening algorithm which flags potential locations of interest. These flagged locations are then passed to a feature-based processor which further discriminates target-like anomalies from naturally occurring clutter. Current field trial (over 6500 square meters) and blind test results (over 39000 square meters) are presented and these show at least an order of magnitude improvement over other radar system-based detection algorithms on the same test lanes.  相似文献   

12.
航迹规划中反舰巡航导弹的雷达突防能力   总被引:4,自引:0,他引:4  
许诚  曾亮 《飞行力学》2004,22(2):82-84,93
在导弹航迹规划中,需要计算导弹突防过程中被雷达发现的概率。为此,在雷达方程中引入雷达系统特征常数以简化雷达方程,从探测概率与信噪比的关系出发,通过一系列的推导并考虑杂波的影响得出探测概率与目标距离的关系,提出在航迹规划中用横距探测概率来表征反舰巡航导弹的雷达突防能力。算例计算结果较为真实,表明该方法有一定应用价值。  相似文献   

13.
Some data indicate that aircraft targets viewed from certain aspects are well modeled as consisting of a few specular reflectors. The effect of a simplified form of this target model upon radar detection performance for two different waveforms has been analyzed. The signal-to-noise ratio (SNR) required for detection as a function of waveform bandwidth for a conventional-single-channel waveform and for a four-channel frequency diversity waveform is evaluated. It is shown that for either waveform there is an optimum bandwidth to minimize the SNR required for detection. In addition, the single-channel minimum is less than the four-channel minimum. The best performance occurs for the single-channel waveform when the waveform bandwidth just resolves the individual reflectors. For typical targets, this bandwidth is of the order of 35 to 75 MHz. It is also shown that only a 0.8-dB loss relative to this minimum is incurred when using a four-channel narrow bandwidth waveform.  相似文献   

14.
GLRT Detectors for Aircraft Wake Vortices in Clear Air   总被引:1,自引:1,他引:0  
 In this article, radar echoes of aircraft wake vortices are modeled as weighted sums of the frequency components of the echoes with a special covariance matrix for the weighted coefficients. With a proposed detection scheme, two generalized likelihood ratio test (GLRT) detectors are derived respectively for aircraft wake vortices with time-varying and time-invariant Doppler spectra. Then the analytical expressions for detection and false alarm probabilities of the detectors are derived and three factors are investigated which mainly influence the detection performance, i.e., the Doppler extension and uncertainty of the aircraft wake vortex, and the number of the detection cells. The results indicate that, the signal-to-noise ratio (SNR) loss induced by Doppler extension is generally several decibels. The SNR loss due to Doppler uncertainty is approximately proportional to the logarithm of the number of spectrum lines in the uncertain Doppler spectrum intervals. For a large number of detection cells, the SNR gain is approximately proportional to the square root of the number of the detection cells.  相似文献   

15.
The effects of multiplier offset voltages in adaptive arrays are examined. Multiplier offset voltages arise when active circuits are used to implement the error-by-signal multipliers required in an array based on the LMS algorithm. These offset voltages are known from experimental work to have a strong effect on array performance. It is first shown how multiplier offset voltages may be included in the differential equations for the array weights. Then their effect on weight behavior is studied. It is found that the offset voltages affect the final values of the weights, but not the time constants. Furthermore, the effect they have is influenced by the amount of element noise in the array. An adequate amount of noise is necessary to minimize weight errors due to offset voltages. An example is treated to show the effect of offset voltages on the final array weights and the output signal-to-noise ratio (SNR). With offset voltages present, it is found that there is a maximum SNR that can be obtained from the array. A specific input SNR is required to obtain this maximum output SNR. Finally, it is shown that a finite operating range for the weights places a further restriction on the acceptable values of offset voltages and noise.  相似文献   

16.
In this paper the acquisition of a low observable (LO) incoming tactical ballistic missile using the measurements from a surface based electronically scanned array (ESA) radar is presented. We present a batch maximum likelihood (ML) estimator to acquire the missile while it is exo-atmospheric. The proposed estimator, which combines ML estimation with the probabilistic data association (PDA) approach resulting in the ML-PDA algorithm to handle false alarms, also uses target features. The use of features facilitates target acquisition under low signal-to-noise ratio (SNR) conditions. Typically, ESA radars operate at 13-20 dB, whereas the new estimator is shown to be effective even at 4 dB SNR (in a resolution cell, at the end of the signal processing chain) for a Swerling III fluctuating target, which represents a significant counter-stealth capability. That is, this algorithm acts as an effective “power multiplier” for the radar by about an order of magnitude. An approximate Cramer-Rao lower bound (CRLB), quantifying the attainable estimation accuracies and shown to be met by the proposed estimator, is derived as well  相似文献   

17.
The PRSD detector improves radar performance by controlling the distribution of energy in space, thus making a radar adaptive to its environment. An increase in performance over classical detectors may be realized in any of several ways: 1) greater maximum range; 2) smaller minimum detectable targets; 3) higher data rates; 4) lower average transmitted power, which allows smaller size and weight of equipment. The model of the PRSD detector described herein was tested with a semi-agile beam radar, and gave measured field performance improvement (for this particular radar) equivalent to an S/N increase ranging from 5 to 22 dB with a mean of 9.5 dB. This increase is greater than the 5-dB improvement predicted for the system in a white noise environment because many of the field tests were at locations subjected to heavy interference. The PRSD detector was extremely effective reducing the interference. In this paper, we will briefly review the theory of operation, describe the equipment and the method of test, and present experimental data. The data presented here are essential to a complete understanding of sequential detection since a rigorous theory encompassing multiple range bin radar has not been developed at this time. Finally, an extensive bibliography is appended.  相似文献   

18.
Coherent signal detection in non-Gaussian interference is presently of interest in adaptive array applications. Conventional array detection algorithms inherently model the interference with a multivariate Gaussian random vector. However, non-Gaussian interference models are also under investigation for applications where the Gaussian assumption may not be appropriate. We analyze the performance of an adaptive array receiver for signal detection in interference modeled with a non-Gaussian distribution referred to as a spherically invariant random vector (SIRV). We first motivate this interference model with results from radar clutter measurements collected in the Mountain Top Program. Then we develop analytical expressions for the probability of false alarm and the probability of detection for the adaptive array receiver. Our analysis shows that the receiver has constant false alarm rate (CFAR) performance with respect to all the interference parameters. Some illustrative examples are included that compare the detection performance of this CFAR receiver with a receiver that has prior knowledge of the interference parameters  相似文献   

19.
IMMPDAF for radar management and tracking benchmark with ECM   总被引:2,自引:0,他引:2  
A framework is presented for controlling a phased array radar for tracking highly maneuvering targets in the presence of false alarms (FAs) and electronic countermeasures (ECMs). Algorithms are presented for track formation and maintenance; adaptive selection of target revisit interval, waveform and detection threshold; and neutralizing techniques for ECM, namely, against a standoff jammer (SOJ) and range gate pull off (RGPO). The interacting multiple model (IMM) estimator in combination with the probabilistic data association (PDA) technique is used for tracking. A constant false alarm rate (CFAR) approach is used to adaptively select the detection threshold and radar waveform, countering the effect of jammer-induced false measurements. The revisit interval is selected adaptively, based on the predicted angular innovation standard deviations. This tracker/radar-resource-allocator provides a complete solution to the benchmark problem for target tracking and radar control. Simulation results show an average sampling interval of about 2.5 s while maintaining a track loss less than the maximum allowed 4%  相似文献   

20.
The average likelihood ratio detector is derived as the optimum detector for detecting a target line with unknown normal parameters in the range-time data space of a search radar, which is corrupted by Gaussian noise. The receiver operation characteristics of this optimum detector is derived to evaluate its performance improvement in comparison with the Hough detector, which uses the return signal of several successive scans to achieve a non-coherent integration improvement and get a better performance than the conventional detector. This comparison, which is done through analytic derivations and also through simulation results, shows that the average likelihood ratio detector has a better performance for different SNR values. This result is justified by showing the disadvantages of the Hough method, which are eliminated by the optimum detector. To have an estimate for the location of the detected target line in the optimum detection method as the Hough method, which detects and localizes the target lines simultaneously, we present the maximum a posteriori probability estimator. The estimation performance of the two methods is then compared and it is shown that the maximum a posteriori probability estimator localizes the detected target lines with a better performance in comparison with the Hough method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号