首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
航空发动机涡轮叶片高周疲劳裂纹 故障分析与思考   总被引:1,自引:0,他引:1  
针对航空发动机涡轮整体叶盘叶片发生的高周疲劳裂纹故障,及排故初期受动应力测试条件限制,主要采取增强结构抗力的排故措施使裂纹位置集中于叶片尾缘根部。后经高温、高转速、小尺寸整体叶盘叶片动应力测试技术攻关,明确故障主要为涡轮导叶尾流激起的叶片振动应力超限所致。采取增加导叶数避开共振的改进措施,并经整机高周疲劳试验考核验证了其有效性。认识到叶片振动特性设计时需关注的几个问题,及先进动应力测试技术在发动机研制过程中的不可或缺,形成了一套经过实践验证的叶片高周疲劳排故工作流程,对国内航空发动机研制起到一定的参考借鉴作用。  相似文献   

2.
高温合金涡轮转子在经历过多次发动机试车后荧光检查发现叶片根部存在裂纹,对涡轮转子叶片裂纹进行分析。结果表明,涡轮转子叶片裂纹位于叶片根部进出口薄壁区,裂纹的开裂模式为高温疲劳开裂,属于低周疲劳,为寿命型失效。试车过程中转子叶片根部应力集中部位在高温及交变应力的交互作用下,叶尖根部应力集中区域发生蠕变和晶界择优氧化,高温蠕变和沿晶氧化相互促进,导致叶片根部的晶界弱化开裂,形成了疲劳源区,进而在后续工作过程中发生高温疲劳扩展。  相似文献   

3.
采用SEM和EDS分析高压涡轮叶片冷却孔间裂纹的失效机理,发现引起裂纹的主要原因是作用在叶片上的热机械疲劳应力和局部应力集中所致,针对K417铸造高温等轴晶材料熔焊产生晶界裂纹和晶界液化裂纹机理,开发了微弧等离子低应力焊接技术,控制了焊接缺陷的产生,实现了冷却孔裂纹的高压涡轮叶片的再制造.  相似文献   

4.
铸型搅动法细晶铸造使K418B合金整体涡轮获得了细小、均匀的等轴晶粒,改善了合金中初生MC和γ′相的分布形态,并使它们的平均尺寸减小。细晶铸造K418B合金整体涡轮材料在450~650℃的低周疲劳寿命至少是普通铸造的4倍。  相似文献   

5.
研究了铸造温度参数(型壳温度T型壳、浇注过热度△T)在铸型搅动整体涡轮细晶铸造工艺中对涡轮各部位晶粒特性的影响。结果表明:型壳温度、浇注过热度对整体细晶铸造涡轮轮毂中心部位晶粒特性没有明显影响,该部位的晶粒度主要由铸型搅动机械参数决定;型壳温度、浇注过热度的复合作用对整体细晶铸造涡轮叶片部位晶粒的尺寸与形态有关键影响。  相似文献   

6.
轴流压气机整体叶盘叶片裂纹故障研究   总被引:7,自引:2,他引:5  
某型高压压气机整体叶盘在使用过程中出现叶片裂纹故障。运用ANSYS软件对该转子叶片振动特性进行详细计算分析,并结合裂纹叶片断口宏观、微观及金相组织检查结果,找出了转子叶片裂纹产生的原因;针对故障原因,采取相应改进措施,对转子叶型及结构进行优化设计,并完成试验验证考核。结果表明,针对该叶片裂纹故障的原因分析准确,改进措施有效。  相似文献   

7.
针对某型航改燃气轮机动力涡轮工作叶片与导向叶片振动疲劳性能差异较大、导向叶片疲劳极限较低的现象,开展了 表面状态检查、内部冶金质量检查、断口分析、组织分析、叶身取样疲劳性能对比分析等工作。结果表明:工作叶片和导向叶片表面 和内部冶金质量均满足标准要求,内部晶粒度和显微疏松等级相当;工作叶片和导向叶片裂纹均为靠近“叶根”进排气边处的疲劳 裂纹;导向叶片未采用细晶工艺,叶身表面晶粒较粗;导向叶片使用返回料导致枝晶间组织粗大、局部区域存在针状TCP 相。  相似文献   

8.
北京航空材料研究院研制了我国第一台细晶铸造真空炉,该炉可用铸型搅动法浇注整体细晶涡轮和双性能整体涡轮。细晶铸造能够改善铸件中低温下的力学性能。  相似文献   

9.
采用高温合金控晶铸造工艺,将动力涡轮的轮盘铸造成细晶,叶片根部铸造成平行于应力方向的柱状晶,并对铸件进行热等静压和真空热处理,脚了普通铸造动力涡轮叶片过早断裂的技术难题。  相似文献   

10.
含裂纹叶片的轴流式压气机整体叶盘振动特性分析   总被引:1,自引:1,他引:0  
陈香  朱靖  张亚 《航空动力学报》2015,30(5):1141-1148
某型轴流式压气机性能试验过程中出现转子叶片裂纹故障.结合该型压气机结构特点,分析了振动响应的时域信号、频域信号以及高频成分出现的频率波动现象,总结了含裂纹叶片的轴流式压气机整体叶盘振动特性.分析结果显示:含裂纹叶片的整体叶盘使得轴流压气机振动响应呈现非线性特性;振动频谱中出现共振峰分离现象,表明叶片裂纹引起轴流压气机1级转子叶盘出现结构失谐;随转速升高,两个共振峰对应频率均出现波动现象(波动周期分别约为8s和9.2s),叶片裂纹不断扩展且数量增加,整体叶盘失谐程度不断加深,整体叶盘系统出现低阶模态局部化现象.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号