首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
行星际磁场北向时磁层顶区磁场重联的全球模式   总被引:2,自引:0,他引:2  
在对背阳面磁层顶区局域磁场重联模拟的基础上提出了一个行星际磁场北向时磁层顶磁场重联的全球模式。行星际磁场北向时碰层顶磁场重联导致近地尾瓣的能量被输送到远磁尾,太阳风能量不在磁尾储存,向阳面磁层顶变厚,磁层受到一系列扰动。   相似文献   

2.
本文用二维可压缩MHD模型,模拟研究了向阳面磁顶区的涡旋诱发重联过程。重联过程的结果形成了同心的磁流体涡旋。同时还对可压缩模型与不可压缩模型的异同点作了对比研究。结果表明,在同样条件下,可压缩情况的涡旋发展的增长率比不可压缩情况慢;结构特性无显著变化。本文指出,涡旋诱发重联是产生通量传输事件的一种重要机制。通量传输管可看作为磁流体涡旋管。对通量传输事件诸物理量(磁场、速度、密度、压力和温度)的分布特性作了模拟研究,可解释FTEs的主要观测特性。   相似文献   

3.
Cluster的观测区包括太阳风与磁层相互作用的关键区域.本文将Tsyganenko经验模式T96,T01及Alexeev抛物面模式A2000的模拟结果与Cluster的磁场资料进行了详细对比,研究了两种模式对于近地点分别位于日侧及夜侧磁层的不同Cluster轨道上磁场的模拟性能.结果表明: (1)Cluster近地点附近轨道上的磁场主要受Birkland电流影响,T96,T01能很好地估计电流系位置,但对其强度模拟有所偏差,由于A2000不包含Ⅱ区场向电流,因此模拟不出近地点附近的磁场扰动; (2)对于0>Dst>-100 nT情况,T96与T01性能相当,但由于缺少部分环电流,T96对于日侧昏线附近的磁场模拟偏差大; (3)T96与T01对夜侧近地点轨道上磁场模拟的均方根相对误差为40%左右,受极尖区电流影响,日侧时误差上升到50%,而A2000均方根相对误差明显偏大,均为58%左右.   相似文献   

4.
通常认为,同步轨道区的电子通量增加是由于磁暴或者上游太阳风高速流的扰动所引起.近来的观测表明,起源于太阳活动的行星际高能电子也是引起同步轨道电子通量增加的重要原因之一.Zhao等在研究2000年7月14日太阳剧烈活动时发现,同步轨道区相对论电子通量巨幅增加时没有观察到上游太阳风高速流的扰动,并且磁暴发生在电子通量事件之后.采用解析磁场模型和实际磁场模型(T96模型)模拟来自太阳的相对论电子在磁尾中的运动特性.计算结果表明,当行星际磁场南向时,进入到磁尾的行星际相对论电子可以从较远的磁尾区域运动到同步轨道区域.这一研究结果从理论上论证了起源于太阳活动的高能电子可以对同步轨道区相对论电子通量的增加产生重要的作用.  相似文献   

5.
考虑太阳风动压与行星电离层中的带电粒子热压及磁压之和平衡,建立了有大气(电离层)的行星磁层顶形成的理论模型,结合卫星对火星的观测数据,对子午面内向日侧火星磁层顶位形进行了数值计算和分析,研究了火星磁层顶位形及其与太阳风动压之间的变化关系.结果认为,火星磁层顶位形与地球磁层顶相似.太阳风动压越大,火星磁层顶越靠近火星;太阳风动压越弱,火星磁层顶越远离火星.根据火星内秉磁矩从古到今逐渐减小的观点,探索了大尺度磁场(内禀磁矩)对火星磁层顶的贡献作用,结果认为大尺度磁场越强,火星磁层顶越远离行星.这对于进一步研究火星磁层的长期演化以及其他行星磁层的位形变化都具有重要的意义.  相似文献   

6.
1997年 1月 10日磁暴期间, Geotail卫星在向阳侧的磁鞘中观测到了磁层氧离子突增事件.这些氧离子的出现和磁鞘中存在很强的南向行星际磁场有关.事件期间向阳面发生了准静态的磁重联,氧离子流存在由北向南的速度分量.通量突增过程具有逆向和正向能量色散现象,磁层内部只有氧离子有可能被梯度漂移输送到重联区,所以只有氧离子在磁鞘中持续地被观测到.估计氧离子的逃逸速率为 0.61× 1023/s,大约为环电流氧离子输入率的 33%.大量的环电流氧离子由磁层跑到了磁鞘,导致环电流指数 ASY-H呈现明显的非对称性.  相似文献   

7.
利用全球磁流体力学(MHD)模拟结果,通过确立包含磁层顶的太阳风流线内边界来识别三维磁层顶位形,并以极尖区位置作为磁层顶日侧与夜侧的分界线,在此基础上定量研究了不同条件下穿过磁层顶向磁层内输入的电磁能量. 研究发现,磁层顶的能量传输与太阳风条件密切相关,磁重联是控制电磁能量传输的重要机制. 结果表明,当IMF(行星际磁场)南向时,极尖区后方的磁尾附近存在电磁能输入最大值,当IMF北向时,电磁能输入最大值发生在极尖区附近;南向IMF条件下,在IMF强度增大或太阳风密度增大时,磁层顶电磁能传输的电磁能量比北向IMF条件时增加更显著. 太阳风通过调节磁层顶面积间接影响到磁层顶能量传输大小. 研究还发现,北向IMF与南向IMF条件下穿过磁层顶的电磁能输入的比值范围约为10%~30%,此比值一定程度上反映了北、南方向IMF与地磁场磁重联效率的比值.   相似文献   

8.
Application of an MHD simulation to the study of substorms   总被引:1,自引:0,他引:1  
The substorm mechanism is studied by the numerical solutions obtained from a resistive magnetohydrodynamic (MHD) simulation. After a southward turning of the interplanetary magnetic field (IMF), the simulation results reproduce observed features of the growth phase. The numerical solutions show that the plasma sheet thinning during the growth phase is formed under the dynamic balance between the flux pileup from the midtail and the flux removal toward the dayside controlled by the convection in the magnetosphere-ionosphere (M-I) coupling system. After the growth phase, dipolarization is generated in the near-earth tail accompanied by a plasma injection into the inner magnetosphere, the formation of plasmoid in the midtail, and the enhancement of the nightside field-aligned currents (FACs). The direct cause of this onset is the state (phase space) transition of the convection system from a thinned state to a dipolarized state associated with a self-organization in the nonlinear system.  相似文献   

9.
This paper is devoted to the study of propagation of disturbances caused by interplanetary shocks (IPS) through the Earth’s magnetosphere. Using simultaneous observations of various fast forward shocks by different satellites in the solar wind, magnetosheath and magnetosphere from 1995 till 2002, we traced the interplanetary shocks into the Earth’s magnetosphere, we calculated the velocity of their propagation into the Earth’s magnetosphere and analyzed fronts of the disturbances. From the onset of disturbances at different satellites in the magnetosphere we obtained speed values ranging from 500 to 1300 km/s in the direction along the IP shock normal, that is in a general agreement with results of previous numerical MHD simulations. The paper discusses in detail a sequence of two events on November 9th, 2002. For the two cases we estimated the propagation speed of the IP shock caused disturbance between the dayside and nightside magnetosphere to be 590 km/s and 714–741 km/s, respectively. We partially attributed this increase to higher Alfven speed in the outer magnetosphere due to the compression of the magnetosphere as a consequence of the first event, and partially to the faster and stronger driving interplanetary shock. High-time resolution GOES magnetic field data revealed a complex structure of the compressional wave fronts at the dayside geosynchronous orbit during these events, with initial very steep parts (10 s). We discuss a few possible mechanisms of such steep front formation in the paper.  相似文献   

10.
The north-south component Bz of the Interplanetary Magnetic Field (IMF) and solar wind dynamic pressure Pd are generally treated as the two main factors in the solar wind that determine the geometry of the magnetosphere. By using the 3D global MHD simulations, we investigate the effect of the Interplanetary Electric Field (IEF) on the size and shape of magnetopause quantitatively. Our numerical experiments confirm that the geometry of the magnetopause are mainly determined by PdBz, as expected. However, the dawn-dusk IEFs have great impact on the magnetopause erosion because of the magnetic reconnection, thus affecting the size and shape of the magnetopause. Higher solar wind speed with the same Bz will lead to bigger dawn-dusk IEFs, which means the higher reconnection rate, and then results in more magnetic flux removal from the dayside. Consequently, the dayside magnetopause moves inward and flank magnetopause moves outward.   相似文献   

11.
The earthward displacement of the magnetopause observed during a southward IMF (or the magnetopause erosion) and its dependence on the solar wind plasma and magnetic field parameters is studied by investigating data of about 30 magnetopause crossings by the ISEE 1 and 2 spacecraft. It is shown that the magnetopause erosion may be explained by a depression of the magnetic field intensity in the dayside magnetosphere caused by the penetration of the magnetosheath magnetic field (component perpendicular to the reconnection line) into the magnetosphere. The penetration coefficient (the ratio of the intensity of the penetrated field to the intensity of the magnetosheath magnetic field) is estimated and found to equal approximately 1.  相似文献   

12.
This article aims to understand the motion of the charged particles trapped in the Earth’s inner magnetosphere. The emphasis is on identifying the numerical scheme, which is appropriate to characterize the trajectories of the charged particles of different energies that enter the Earth’s magnetosphere and get trap along the magnetic field lines. These particles perform three different periodic motions, namely: gyration, bounce, and azimuthal drift. However, often, the gyration of the particle is ignored, and only the guiding center of the particle is traced to reduce the computational time. It is because the simulation of all three motions (gyro, bounce, and drift) together needed a robust numerical scheme, which has less numerical dissipation. We have developed a three-dimensional test particle simulation model in which the relativistic equation of motion is solved numerically using the fourth and sixth-order Runge-Kutta methods. The stability of the simulation model is verified by checking the conservation of total kinetic energy and adiabatic invariants linked with each type of motion. We found that the sixth-order Runge-Kutta method is suitable to trace the complete trajectories of both proton and electron of a wide energy range, 5 keV to 250 MeV for L = 2  6. We have estimated the bounce and drift periods from the simulations, and they are found to be in good agreement with the theory. The study implies that a simulation model with sixth-order Runge-Kutta method can be applied to the time-vary, non-analytical form of magnetic configuration in future studies to understand the dynamics of charged particles trapped in Earth’s magnetosphere.  相似文献   

13.
In this review, we discuss the structure and dynamics of the magnetospheric Low-Latitude Boundary Layer (LLBL) based on recent results from multi-satellite missions Cluster and Double Star. This boundary layer, adjacent to the magnetopause on the magnetospheric side, usually consists of a mixture of plasma of magnetospheric and magnetosheath origins, and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics. During southward Interplanetary Magnetic Field (IMF) conditions, this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause, and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process. During northward IMF conditions, the LLBL is usually thicker, and has more complex structure and topology. Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection, dual lobe reconnection, or by sequential dual lobe reconnection, as well as partially by localized cross-field diffusion. The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review. The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed. Overall, we conclude that the LLBL observed at the flanks can be formed by the combination of processes, (dual) lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves.   相似文献   

14.
磁层多尺度卫星(MMS-1)在日侧06:30 MLT(磁地方时,Magnetic Local Time)外磁层大于2Re(L为7.5~10.1)的范围内观测到多达21个波包的准周期性电磁离子回旋波(EMIC)事件.超低频(ULF)波和能量质子温度各向异性准周期性增强也被同步观测到.频率分析显示,ULF波的周期、质子各向...  相似文献   

15.
磁层中的超低频(ULF)波动在太阳风和磁层之间的能量输运过程中具有重要作用.ULF波动主要发生在内磁层,且内磁层中ULF波动影响粒子的加速及沉降,而在夜侧磁层尤其是磁尾等离子片中观测到的ULF波动比较少.基于中国自主磁层探测卫星TC-1的观测数据,发现了两例行星际激波导致的磁尾中心等离子片中ULF波动事件,并发现这两例ULF事例都包含很强的环向模驻波分量,与以往THEMIS卫星报道的同类事件观测特征相符.根据ULF波的观测特征,分析了这两例ULF波动的可能触发机制.研究结果有助于深入理解磁层对行星际激波的全球响应.   相似文献   

16.
本文通过STARE观测的晨不连续性及其与TRIAD观测的场向电流分界区、AE-C卫星观测的电场转向区位置的比较,提出了在高扰日向阳面对流电场转向区位置存在着晨不对称性——晨半面所处纬度低于昏半面.该现象间接说明向阳面磁层边界层也存在某种不对称性.并在观测基础上对可造成该不对称性的物理因子进行了探讨,认为行星际磁场螺线结构对重连区位置的影响及其产生的激波结构的晨昏不对称性很可能与本文中讨论的现象有一定联系.   相似文献   

17.
We have developed a real-time global MHD (magnetohydrodynamics) simulation of the solar wind interaction with the earth’s magnetosphere. By adopting the real-time solar wind parameters and interplanetary magnetic field (IMF) observed routinely by the ACE (Advanced Composition Explorer) spacecraft, responses of the magnetosphere are calculated with MHD code. The simulation is carried out routinely on the super computer system at National Institute of Information and Communications Technology (NICT), Japan. The visualized images of the magnetic field lines around the earth, pressure distribution on the meridian plane, and the conductivity of the polar ionosphere, can be referred to on the web site (http://www2.nict.go.jp/y/y223/simulation/realtime/).The results show that various magnetospheric activities are almost reproduced qualitatively. They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere. From the viewpoint of space weather, the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere. To evaluate the simulation results, we compare the AE indices derived from the simulation and observations. The simulation and observation agree well for quiet days and isolated substorm cases in general.  相似文献   

18.
  总被引:1,自引:0,他引:1  
为了研究磁流体动力学(MHD)控制低温微电离等离子体射流,实现推力矢量的可行性,提出了一种基于MHD控制等离子体流动理论的试验方法,建立了种子(碱金属盐)诱导燃气电离的MHD流动控制试验台,研究了不同温度和不同磁场方向条件下射流偏转向量角,并用用户自定义函数(UDF)加载MHD模型求解三维N-S方程,探究了数值研究MHD控制的可行性.结果表明:向燃烧室内注入低电离能种子能够诱导燃气电离,形成磁流体,在磁场作用下实现推力矢量控制;等离子体射流偏转的数值模拟结果与试验结果在一定程度上是一致的,说明数值模拟MHD流动控制具有一定的可信度.  相似文献   

19.
The interaction between the solar wind and Mercury is anticipated to be unique because of Mercury’s relatively weak intrinsic magnetic field and tenuous neutral exosphere. In this paper the role of the IMF in determining the structure of the Hermean magnetosphere is studied using a new self-consistent three-dimensional quasi-neutral hybrid model. A comparison between a pure northward and southward IMF shows that the general morphology of the magnetic field, the position and shape of the bow shock and the magnetopause as well as the density and velocity of the solar wind in the magnetosheath and in the magnetosphere are quite similar in these two IMF situations. A Parker spiral IMF case, instead, produces a magnetosphere with a substantial north–south asymmetric plasma and magnetic field configuration. In general, this study illustrates quantitatively the role of IMF when the solar wind interacts with a weakly magnetised planetary body.  相似文献   

20.
Mercury has a small but intriguing magnetosphere. In this brief review, we discuss some similarities and differences between Mercury’s and Earth’s magnetospheres. In particular, we discuss how electric and magnetic field measurements can be used as a diagnostic tool to improve our understanding of the dynamics of Mercury’s magnetosphere. These points are of interest to the upcoming ESA-JAXA BepiColombo mission to Mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号