首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
三维试验粒子轨道法在磁层粒子全球输运中的应用   总被引:1,自引:1,他引:0  
根据磁层粒子动力学理论, 通过偶极磁场模型验证利用三维试验粒子轨道方法模拟近地球区(r < 8Re)带电粒子运动特征的可靠性. 在此基础上, 以太阳风和磁层相互作用的全球MHD模拟结果为背景, 利用三维试验粒子轨道方法, 对非磁暴期间南向行星际磁场背景下太阳风离子注入磁层的情形进行数值模拟, 并对北向行星际磁场背景下太阳风离子注入极尖区以及内磁层的几种不同情形进行了单粒子模拟. 模拟结果反映了南向和北向行星际磁场离子向磁层的几种典型输入过程, 揭示出行星际磁场南向时太阳风粒子在磁层内密度分布的晨昏不对称性以及其在磁鞘和磁层内的大致分布, 并得出统计规律. 模拟结果与理论预测和观测结论相一致, 且通过数值模拟发现, 行星际磁场北向时靠近极尖区附近形成的非典型磁镜结构对于能量粒子经由极尖区注入环电流区域过程有重要的影响和作用.   相似文献   

2.
磁层亚暴是太阳风–磁层–电离层耦合过程中的重要爆发性事件,其特性受太阳风参数的影响很大。本文利用对IMAGE卫星在2000 - 2005年观测到的4193个亚暴起始事件,统计研究了在不同的行星际磁场(IMF)Bz 条件下亚暴起始位置和膨胀相持续时间。结果表明,南向IMF发生的亚暴比北向IMF下发生的亚暴要多。南向IMF条件下亚暴AE指数最大值的平均值基本上>600 nT,并有随南向IMF持续时间增大而增大的趋势。北向IMF条件下亚暴AE指数最大值的平均值基本上<500 nT,并有随北向IMF持续时间增大而减小的趋势。亚暴的起始磁纬度基本上位于65° - 70°之间。当南向IMF或北向IMF的持续时间增大,超过80 min时,北半球的亚暴起始磁纬度会降低。亚暴起始磁地方时大部分位于22:15 - 23:15 MLT之间。但整体分布比较分散,显示不出特别清晰的随IMF Bz持续时间变化的趋势。相比于南向的IMF,北向IMF期间发生亚暴的平均膨胀相持续时间增大了将近10 min,表明南向IMF期间,亚暴强度虽然较大,但其膨胀相持续时间较短,亚暴能量释放和耗散的速度更快。   相似文献   

3.
极端太阳风条件下的磁层顶位形   总被引:1,自引:1,他引:0  
基于极端太阳风条件下的三维MHD数值模拟数据, 构建了一种极端太阳风条件下的三维非对称磁层顶位形模型. 所提出的模型考虑了行星际南向磁场(IMF) Bz日下点距离侵蚀的饱和效应, 太阳风动压Bd对磁层顶张角影响的饱和效应, 赤道面、昼夜子午面磁层顶的不对称性以及极尖区的内凹结构和内凹中心的移动, 并利用Levenberg-Marquart多参量非线性拟合方法拟合了模型参数. 数值模拟研究表明, 在极端太阳风条件下, 随Bd增大, 磁层顶日下点距离减小, 磁层顶磁尾张角几乎不变; 随南向(IMF)Bz增大, 磁层顶日下点距离略有减小, 磁层顶磁尾张角减小, 极尖区内凹中心向低纬移动. 通过对2010年8月1日太阳风暴事件验证发现, 本文所建立的模型能够描述极端太阳风条件下的三维磁层顶位形.   相似文献   

4.
行星际磁场北向时磁层顶区磁场重联的全球模式   总被引:2,自引:0,他引:2  
在对背阳面磁层顶区局域磁场重联模拟的基础上提出了一个行星际磁场北向时磁层顶磁场重联的全球模式。行星际磁场北向时碰层顶磁场重联导致近地尾瓣的能量被输送到远磁尾,太阳风能量不在磁尾储存,向阳面磁层顶变厚,磁层受到一系列扰动。   相似文献   

5.
通过分析太阳风-磁层-电离层系统的三维全球磁流体力学(MHD)模型的计算数据, 给出了正午-午夜子午面磁层顶位形的定量模型. 分析表明, 正午-午夜子午面磁层顶位形可以用文献[3]提出的基于卫星观测数据的、描述赤道面磁层顶位形的函数来描述. 与赤道面磁层顶不同, 正午-午夜子午面磁层顶位形更为复杂. 在忽略极尖区(cusp)的简化条件下, 磁层顶位形仍需利用两条曲线来拟合. 太阳风动压Dp与行星际磁场分量Bz是控制磁层顶位形的主要因素. 行星际磁场为北向时, 磁场增强, 日下点距离r0增大; 行星际磁场为南向时, 磁场增强, 磁层顶日下点距离r0减小. 整体而言, 行星际磁场分量Bz由南转北时, r0增大, 且Bz对r0的影响减弱. 太阳风动压Dp是控制磁层顶日下点的主要因素, Dp增大, r0减小. 磁层顶位形的另一个参数磁层顶磁尾张角α, 随着行星际磁场南向分量增强而增大, 即磁层顶张开程度更加显著, 更多的磁通量由向阳侧传输到夜侧; Dp增大, α略增大, 这意味着Dp对磁通量由日侧向夜侧的传输也有一定的贡献.   相似文献   

6.
赵明现 《空间科学学报》2022,42(6):1068-1078
以ACE卫星实时观测数据驱动的全球磁流体模拟为背景场,选取2003年10月22-24日行星际磁场(IMF)持续北向的事件,使用试验粒子方法,对太阳风粒子向磁层输运的过程进行模拟研究,分析北向IMF下太阳风粒子注入磁层过程中粒子在磁层内的空间分布和时间演化特征。IMF北向期间,进入环电流区域的粒子在晨侧区域的密度大于昏侧,且晨侧的粒子分布范围更广。背阳面磁鞘中的太阳风粒子可以通过低纬边界层进入磁层,但很难通过南北侧磁层顶进入磁层。进入磁尾的太阳风粒子聚集形成冷而密的等离子体片(CDPS),模拟中CDPS的空间分布和密度大小与观测数据符合。在IMF长时间北向期间,磁尾的粒子数量呈现随时间增长的趋势,并存在约20 min的小幅度准周期变化和约5~6 h的较大幅度的准周期变化。   相似文献   

7.
TC-1和Cluster对向阳侧磁层顶通量传输事件的联合观测研究   总被引:2,自引:1,他引:1  
2004年2至4月期间,探测一号(TC-1)卫星和Cluster卫星有25次同时处在向阳侧磁层顶附近的磁鞘内,TC-1卫星在低纬区,Cluster卫星在中高纬区.利用这一期间两卫星探测到的27个通量传输事件(FTE),分析行星际磁场(IMF)横向分量BT={By,Bz}对磁层顶重联发生位置的影响,以及分量重联的观测事实,得到如下主要结果.(1)当IMF南向分量Bz占优势(|Bz|>|By|)时,FTE大多(约占87.5%)能在低纬观测到,而当IMF By分量占优势(|Bz|<|By|)时,则FTE大部分能在中高纬观测到(占84.2%);(2)很少观测到相关联的事件(关联事件指在低纬生成的FTE,向高纬运动中先后被TC-1卫星和Cluster卫星探测到的事件),表明在低纬形成的FTE可能大多沿磁层顶两侧滑向磁尾,只有少数可能运动到高纬地区;(3)中纬地区探测到的FTE大多是以分量重联方式产生于该区,而非来自磁赤道附近成对形成的FTE.   相似文献   

8.
基于T96模型,定义了极尖区的位形以及相关的描述参量(例如赤道向边界磁纬的最小值,纬向宽度,子午向和晨昏向的张角,倾斜度,扁平度,中心磁地方时等),讨论了太阳风动压(P_d)、行星际磁场(IMF)及磁暴强度对极尖区位形的影响.太阳风动压和磁暴强度越大,则极尖区的赤道向边界磁纬越小,纬向宽度越大,子午向和晨昏向的张角越大,倾斜度越大,扁平度越小;南向IMF B_z越强,则极尖区的赤道向边界磁纬越小,纬向宽度越小,子午向的张角越小,晨昏向的张角越大,倾斜度越大,扁平度越大;北向IMF B_z与南向IMF B_z的情况刚好相反;极尖区的中心磁地方时受IMF B_y控制,IMF B_y为正时,极尖区向昏侧移动,而IMF B_y为负时,极尖区则向晨侧移动,并且极尖区的中心磁地方时与IMF B_y之间有着良好的线性关系.将所得结果与前人的观测结果进行了简单比较,发现利用T96模型确定的极尖区位形与观测基本一致.  相似文献   

9.
磁层顶附近的流场剪切度与磁层顶附近能量转换的程度有关.很多磁层顶数值模拟用到流场剪切度这个输入参数,但一直是假设的.本文利用Cluster多卫星同时观测数据及独特的时空分辨功能,采用线性插值和重心坐标的方法确定了磁层顶附近流场的剪切度.通过对晨侧和昏侧磁层顶及附近磁层磁鞘流场剪切度的真实空间分布的研究结果表明,在平静的太阳风条件和地磁条件下磁层顶附近流场剪切度有时也很大,可达每百公里330 km/s的相对速度差.但在很多情况下流场是弱剪切的,在上千公里的距离上只有每秒几十公里的相对速度差.本文确定流场剪切度的方法可以推广用来确定任一位置的流场剪切度.   相似文献   

10.
利用中国北极黄河站高时间分辨率的三波段全天空成像仪极光观测数据,联合太阳风和行星际磁场等观测,分析了极向运动极光结构(PMAFs)和喉区极光的形成及演化特征.研究发现:一系列PMAFs与喉区极光事件同时出现在观测视野中,其中PMAFs主要发生在日侧极隙区极光卵赤道向边界的极向一侧,沿东西方向分布,点亮后向高纬运动;喉区极光紧靠PMAF一侧发生,从极光卵赤道向边界向低纬延伸,沿南北方向分布,点亮后向高纬偏西方向运动;观测期间PMAFs发生频率高于喉区极光;当PMAFs与喉区极光同时出现时,PMAFs可以与喉区极光几乎同时出现或略晚于喉区极光出现,持续时间较喉区极光短.观测结果表明:与PMAF相对应的磁层顶重联过程和与喉区极光对应的磁层顶凹陷导致的磁重联过程在日侧磁层顶上的相邻区域分别发生,两种极光事件的形成过程相对独立,可能不存在相互触发关系.   相似文献   

11.
In this review, we discuss the structure and dynamics of the magnetospheric Low-Latitude Boundary Layer (LLBL) based on recent results from multi-satellite missions Cluster and Double Star. This boundary layer, adjacent to the magnetopause on the magnetospheric side, usually consists of a mixture of plasma of magnetospheric and magnetosheath origins, and plays an important role in the transfer of mass and energy from the solar wind into the magnetosphere and subsequent magnetospheric dynamics. During southward Interplanetary Magnetic Field (IMF) conditions, this boundary layer is generally considered to be formed as a result of the reconnection process between the IMF and magnetospheric magnetic field lines at the dayside magnetopause, and the structure and plasma properties inside the LLBL can be understood in terms of the time history since the reconnection process. During northward IMF conditions, the LLBL is usually thicker, and has more complex structure and topology. Recent observations confirm that the LLBL observed at the dayside can be formed by single lobe reconnection, dual lobe reconnection, or by sequential dual lobe reconnection, as well as partially by localized cross-field diffusion. The LLBL magnetic topology and plasma signatures inside the different sub-layers formed by these processes are discussed in this review. The role of the Kelvin-Helmholtz instability in the formation of the LLBL at the flank magnetopause is also discussed. Overall, we conclude that the LLBL observed at the flanks can be formed by the combination of processes, (dual) lobe reconnection and plasma mixing due to non-linear Kelvin-Helmholtz waves.   相似文献   

12.
The earthward displacement of the magnetopause observed during a southward IMF (or the magnetopause erosion) and its dependence on the solar wind plasma and magnetic field parameters is studied by investigating data of about 30 magnetopause crossings by the ISEE 1 and 2 spacecraft. It is shown that the magnetopause erosion may be explained by a depression of the magnetic field intensity in the dayside magnetosphere caused by the penetration of the magnetosheath magnetic field (component perpendicular to the reconnection line) into the magnetosphere. The penetration coefficient (the ratio of the intensity of the penetrated field to the intensity of the magnetosheath magnetic field) is estimated and found to equal approximately 1.  相似文献   

13.
The northward and southward orientation of the interplanetary magnetic field (IMF) is usually considered as providing the external boundary conditions in the solar wind interaction with the Earth's magnetopause but it is the magnetic field in the magnetosheath that interacts with the Earth's magnetic field. In this paper, we consider the possibility that the wave activity in the foreshock region may affect the magnetic field orientation in the magnetosheath with time scales that might be geomagnetically effective. If magnetosheath magnetic field becomes disturbed on plasma streamlines which are connected to the quasi-parallel bow shock and foreshock, the magnetic field orientation on the inner magnetosheath may differ significantly from the undisturbed IMF. We present a model of dayside reconnection which may occur when the IMF northward and illustrate its effects on the erosion of the magnetopause.  相似文献   

14.
The interaction between the solar wind and Mercury is anticipated to be unique because of Mercury’s relatively weak intrinsic magnetic field and tenuous neutral exosphere. In this paper the role of the IMF in determining the structure of the Hermean magnetosphere is studied using a new self-consistent three-dimensional quasi-neutral hybrid model. A comparison between a pure northward and southward IMF shows that the general morphology of the magnetic field, the position and shape of the bow shock and the magnetopause as well as the density and velocity of the solar wind in the magnetosheath and in the magnetosphere are quite similar in these two IMF situations. A Parker spiral IMF case, instead, produces a magnetosphere with a substantial north–south asymmetric plasma and magnetic field configuration. In general, this study illustrates quantitatively the role of IMF when the solar wind interacts with a weakly magnetised planetary body.  相似文献   

15.
Recently much attention has been focused on the transient behavior of the magnetopause in response to pressure pulses and southward fluctuations of the interplanetary magnetic field. We examine the motion of the magnetopause behind the foreshock and conclude that this motion is affected by foreshock pressure variations but not by fluctuations in the direction of the magnetic field. Neither magnetopause erosion nor flux transfer event occurrence is controlled by the foreshock. On the contrary, flux transfer events occur at times of steady IMF and thier quasi-periodic behavior is controlled by the magnetopause or the magnetosphere and is not driven by the external boundary conditions. Since flux transfer events are clearly due to reconnection, this observation implies that the IMF must be southward some time perhaps as long as 7 minutes before flux transfer begins.  相似文献   

16.
The north-south component Bz of the Interplanetary Magnetic Field (IMF) and solar wind dynamic pressure Pd are generally treated as the two main factors in the solar wind that determine the geometry of the magnetosphere. By using the 3D global MHD simulations, we investigate the effect of the Interplanetary Electric Field (IEF) on the size and shape of magnetopause quantitatively. Our numerical experiments confirm that the geometry of the magnetopause are mainly determined by PdBz, as expected. However, the dawn-dusk IEFs have great impact on the magnetopause erosion because of the magnetic reconnection, thus affecting the size and shape of the magnetopause. Higher solar wind speed with the same Bz will lead to bigger dawn-dusk IEFs, which means the higher reconnection rate, and then results in more magnetic flux removal from the dayside. Consequently, the dayside magnetopause moves inward and flank magnetopause moves outward.   相似文献   

17.
Two types of convection were observed in the laboratory model of the magnetosphere: viscous convection and convection due to field lines common to both the magnetosphere and artificial solar wind. With a southward field component in the solar wind, convection from the Sun is observed in the polar cap, while with a large northward component, convection is directed toward the Sun. Merging of the field lines occurs in the cleft. With the southward component, a visor appears in front of the magnetosphere boundary. The decay of the visor into small magnetic structure is observed. The formation of an induced magnetosphere with a magnetic tail is shown in the experiments of the simulated conditions near non-magnetic bodies with a plasma shell (Venus, comets). A combined induced-intrinsic magnetosphere also was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号