首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The concept of using Earth-return trajectories in connection with missions to comets was originally proposed in 1972. Papers published in the 1970's and 1980's showed that by using multiple Earth-to-Earth transfers, it was possible to construct a trajectory that would encounter several comets. This technique was used for the first time by ESA's Giotto spacecraft. Following its encounter with Halley's comet in March 1986, Giotto used a single Earth gravity-assist maneuver to intercept comet Grigg-Skjellerup in July 1992. Japan's Sakigake spacecraft tried to use Earth gravity-assist maneuvers to reach comet Honda-Mrkos-Pajdusakova in 1996, but was not successful. Earth-return trajectories are essential elements of two Discovery-class missions to comets; Stardust, and the Comet Nucleus Tour (CONTOUR). The Stardust mission will be launched in February 1999, and will return dust samples collected from comet Wild-2 to the Earth in 2006. CONTOUR is scheduled for a launch in June 2002, and will use six Earth gravity-assist maneuvers to carry out three comet encounters: Encke in 2003; Schwassmann-Wachmann-3 in 2006; and d'Arrest in 2008. An extended-mission scenario would allow CONTOUR to accomplish two additional encounters: Tempel-2 in 2015, and Encke for a second time in 2023.  相似文献   

2.
Fast solar sail rendezvous mission to near Earth asteroids   总被引:1,自引:0,他引:1  
The concept of fast solar sail rendezvous missions to near Earth asteroids is presented by considering the hyperbolic launch excess velocity as a design parameter. After introducing an initial constraint on the hyperbolic excess velocity, a time optimal control framework is derived and solved by using an indirect method. The coplanar circular orbit rendezvous scenario is investigated first to evaluate the variational trend of the transfer time with respect to different hyperbolic excess velocities and solar sail characteristic accelerations. The influence of the asteroid orbital inclination and eccentricity on the transfer time is studied in a parametric way. The optimal direction and magnitude of the hyperbolic excess velocity are identified via numerical simulations. The found results for coplanar circular scenarios are compared in terms of fuel consumption to the corresponding bi-impulsive transfer of the same flight time, but without using a solar sail. The fuel consumption tradeoff between the required hyperbolic excess velocity and the achievable flight time is discussed. The required total launch mass for a particular solar sail is derived in analytical form. A practical mission application is proposed to rendezvous with the asteroid 99942 Apophis by using a solar sail in combination with the provided hyperbolic excess velocity.  相似文献   

3.
The International Rosetta Mission was launched on 2nd March 2004 on its 10 years journey to comet 67P/Churyumov–Gerasimenko. Rosetta will reach the comet in 2014, orbit it for about 1.5 years down to distances of a few kilometres and deliver the Lander Philae onto its surface.Following the fly-by of Asteroid (21-)Lutetia in 2010, Rosetta continued its travel towards the planned comet encounter in 2014. In this phase Rosetta became the solar-powered spacecraft that reached the largest Sun distances in history of spaceflight, up to an aphelion at 5.3 AU in October 2012. At distances above 4.5 AU the spacecraft's solar generator power is not sufficient to keep all spacecraft systems active. Therefore in June 2011 the spacecraft was spun up to provide gyroscopic stabilisation, and most of its on-board units, including those used for attitude control and communications, were switched off. Over this “hibernation” phase of about 2.5 years the spacecraft will keep a minimum of autonomy active to ensure maintenance of safe thermal conditions.After Lutetia fly-by, flight controllers had to tackle two anomalies that had significant impacts on the mission operations. A leak in the reaction control subsystem was confirmed and led to the re-definition of the operational strategy to perform the comet rendezvous manoeuvres planned for 2011 and 2014. Anomalous jumps detected in the estimated friction torque of two of the four reaction wheels used for attitude control forced the rapid adoption of measures to slow down the wheels degradation. This included in-flight re-lubrication activities and changes in the wheels operational speed regime.Once the troubleshooting of the two anomalies was completed, and the related operational scenarios were implemented, the first large (790 m/s) comet rendezvous manoeuvre was executed, split into several long burns in January and February 2011. The second burn was unexpectedly interrupted due to the anomalous behaviour of two thrusters, causing attitude off-pointing. Flight controllers modified the thrusters operation parameters in the on-board software and managed to re-start the sequence of burns and successfully complete the manoeuvre. After the manoeuvre, preparation for the critical spin-up and hibernation entry activities, planned for June 2011, began.This paper presents the activities carried out on Rosetta in the final year before hibernation entry. The major anomalies and the related troubleshooting and workaround solutions are detailed. Lessons learned from the operation of the first spacecraft operating with solar power at Jupiter-like distances from the Sun are presented and discussed.  相似文献   

4.
Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which solar electric propulsion is used to transfer the spacecraft to the pole-sitter orbit. The objective is to minimize the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits manifold-like trajectories that wind onto the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral, which provides further mass savings, but at the cost of an increased time of flight.  相似文献   

5.
The feasible rendezvous, flyby and sample return mission scenario to different spectral-type asteroids for the 2015–2025 are investigated. The emphasis is put on the potential target selection and the design of preliminary interplanetary transfer trajectory in this paper. First, according to different scientific motivations, some potential targets with different spectral-type and physical property are selected. Then, some optimal rendezvous and sample return opportunities for different spectral-type asteroids are presented by using pork-chop plots method and Sequential Quadratic-Programming (SQP) algorithm. In order to reduce the launch energy and total velocity increments for sample return mission, the Earth swingby strategy is used. In addition, the feasible trajectory profiles of flyby and rendezvous with two different spectral-type asteroids in one mission are discussed. A hybrid optimization method combing the Differential Evolution (DE) algorithm and SQP algorithm is introduced as a trajectory design method for the mission. Finally, some important parameters of transfer trajectory are analyzed, which would have a direct impact on the design of spacecraft subsystem, such as communication, power and thermal control subsystem.  相似文献   

6.
This paper provides a detailed mission analysis and systems design of a near-term and far-term pole-sitter mission. The pole-sitter concept was previously introduced as a solution to the poor temporal resolution of polar observations from highly inclined, low Earth orbits and the poor high-latitude coverage from geostationary orbit. It considers a spacecraft that is continuously above either the north or south pole and, as such, can provide real-time, continuous and hemispherical coverage of the polar regions. Being on a non-Keplerian orbit, a continuous thrust is required to maintain the pole-sitter position. For this, two different propulsion strategies are proposed, which result in a near-term pole-sitter mission using solar electric propulsion (SEP) and a far-term pole-sitter mission where the SEP thruster is hybridized with a solar sail. For both propulsion strategies, minimum propellant pole-sitter orbits are designed. In order to maximize the spacecraft mass at the start of the operations phase of the mission, the transfer from Earth to the pole-sitter orbit is designed and optimized assuming either a Soyuz or an Ariane 5 launch. The maximized mass upon injection into the pole-sitter orbit is subsequently used in a detailed mass budget analysis that will allow for a trade-off between mission lifetime and payload mass capacity. Also, candidate payloads for a range of applications are investigated. Finally, transfers between north and south pole-sitter orbits are considered to overcome the limitations in observations due to the tilt of the Earth's rotational axis that causes the poles to be alternately situated in darkness. It will be shown that in some cases these transfers allow for propellant savings, enabling a further extension of the pole-sitter mission.  相似文献   

7.
Recent planning for science and exploration missions has emphasized the high interest in the close investigation of small bodies in the Solar System. In particular in-situ observations of asteroids and comets play an important role in this field and will contribute substantially to our understanding of the formation and history of the Solar System.The first dedicated comet Lander is Philae, an element of ESA's Rosetta mission to comet 67/P Churyumov–Gerasimenko. Rosetta was launched in 2004. After more than 7 years of cruise (including three Earth and one Mars swing-by as well as two asteroid flybys) the spacecraft has gone into a deep space hibernation in June 2011. When approaching the target comet in early 2014, Rosetta will be re-activated. The cometary nucleus will be characterized remotely to prepare for Lander delivery, currently foreseen for November 2014.The Rosetta Lander was developed and manufactured, similar to a scientific instrument, by a consortium consisting of international partners. Project management is located at DLR in Cologne/Germany, with co-project managers at CNES (France) and ASI (Italy). The scientific lead is at the Max Planck Institute for Solar System Science (Lindau, Germany) and the Institut d'Astrophysique Spatiale (Paris).Mainly scientific institutes provided the subsystems, instruments and the complete, qualified lander system. Operations are performed in two dedicated centers, the Lander Control Center (LCC) at DLR-MUSC and the Science Operations and Navigation Center (SONC) at CNES. This concept was adopted to reduce overall cost of the project and is foreseen also to be applied for development and operations of future small bodies landers.A mission profiting from experience gained during Philae development and operations is MASCOT, a surface package for the Japanese Hayabusa 2 mission. MASCOT is a small (∼10 kg) mobile device, delivered to the surface of asteroid 1999JU3. There it will operate for about 16 h. During this time a camera, a magnetometer, a thermal monitor and an IR analytical instrument will provide ground truth and thus will even be able to support the selection of possible sampling sites for the main spacecraft.MASCOT is a flexible design that can be adapted to a wide range of missions and possible target bodies. Also the payload is flexible to some extent (with an overall mass in the 3 kg range). For example, the surface package is part of the optional strawman payload for MarcoPolo-R, a European asteroid sample return mission, proposed for ESA Cosmic Vision M-class.  相似文献   

8.
9.
The International Rosetta Mission, cornerstone of the European Space Agency Scientific Programme, was launched on 2nd March 2004 to its 10 years journey to comet Churyumov–Gerasimenko. Rosetta will reach the comet in summer 2014, orbit it for about 1.5 years down to distances of a few Kilometres and deliver the Lander Philae onto its surface. After its successful asteroid fly-by in September 2008, Rosetta came back to Earth, for the final gravity acceleration towards its longest heliocentric orbit, up to a distance of 5.3 AU. It is during this phase that Rosetta crossed for the second time the main asteroids belt and performed a close encounter with asteroid (21)Lutetia on the 10th of July 2010 at a distance of ca. 3160 km and a relative velocity of 15 km/s. The payload complement of the spacecraft was activated to perform highly valuable scientific observations. The approach phase to the celestial body required a careful and accurate optical navigation campaign that will prove to be useful also for the comet approach phase. The experience gained with first asteroid flyby in 2008 was fed back into the operations definition and preparation for this highly critical phase; this concerns in particular the operations of the navigation camera for the close-loop autonomous asteroid tracking and of the main scientific camera for high resolution imaging. It was shortly after the flyby that Rosetta became the solar-powered spacecraft to have flown furthest from the Sun (>2.72 AU). This paper presents the activities carried out and planned for the definition, preparation and implementation of the asteroid flyby mission operations, including the test campaign conducted to improve the performance of the spacecraft and payload compared to the previous flyby. The results of the flyby itself are presented, with the operations implemented, the achieved performance and the lessons learned.  相似文献   

10.
The deep space 1 extended mission   总被引:2,自引:0,他引:2  
The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.  相似文献   

11.
《Acta Astronautica》2001,48(5-12):651-660
The aim of this paper is to analyse an alternative scenario for Mars Sample Return Orbiter mission, where electric propulsion is used for Earth-Mars and Mars-Earth heliocentric cruises and for Mars orbit insertion / escape transfers, whereas chemical propulsion is used for final Mars rendezvous. The problem consists in minimizing the initial vehicle mass to obtain a specific final dry mass in reasonable time. The planetocentric phases correspond to continuous low-thrust trajectories, spiraling around Mars between a low orbit and the influence sphere altitude. The heliocentric phases consist of a succession of low-thrust and coasting arcs with specific departure and arrival conditions at the Earth. For these two types of transfer, efficient optimal control tools exist based on Pontryagin's maximum principle. Thanks to the coordination between planetocentric and heliocentric phases, the solution obtained with these two separate tools gives a good upper bound of the optimal solution in terms of propellant consumption and duration. This optimization procedure is described and finally applied to the proposed mission. The numerical results are presented and compared with the baseline chemical mission solution. The electric option could allow to decrease the spacecraft departure mass but may lead to rather long mission duration.  相似文献   

12.
《Acta Astronautica》2013,82(2):411-418
The peculiarity of space weather for Earth orbiting satellites, air traffic and power grids on Earth and especially the financial and operational risks posed by damage due to space weather, underline the necessity of space weather observation. The importance of such observations is even more increasing due to the impending solar maximum. In recognition of this importance we propose a mission architecture for solar observation as an alternative to already published mission plans like Solar Probe (NASA) or Solar Orbiter (ESA). Based upon a Concurrent Evaluation session in the Concurrent Engineering Facility of the German Aerospace Center, we suggest using several spacecraft in an observation network. Instead of placing such spacecraft in a solar orbit, we propose landing on several asteroids, which are in opposition to Earth during the course of the mission and thus allow observation of the Sun's far side. Observation of the far side is especially advantageous as it improves the warning time with regard to solar events by about 2 weeks. Landing on Inner Earth Object (IEO) asteroids for observation of the Sun has several benefits over traditional mission architectures. Exploiting shadowing effects of the asteroids reduces thermal stress on the spacecraft, while it is possible to approach the Sun closer than with an orbiter. The closeness to the Sun improves observation quality and solar power generation, which is intended to be achieved with a solar dynamic system. Furthermore landers can execute experiments and measurements with regard to asteroid science, further increasing the scientific output of such a mission. Placing the spacecraft in a network would also benefit the communication contact times of the network and Earth. Concluding we present a first draft of a spacecraft layout, mission objectives and requirements as well as an initial mission analysis calculation.  相似文献   

13.
载人登月飞行方案研究   总被引:2,自引:1,他引:1  
彭祺擘  李桢  李海阳 《上海航天》2012,29(5):14-19,72
根据载人登月任务有无地球轨道和月球轨道交会对接,将登月途径分为地球轨道交会-月球轨道交会、地球轨道交会-直接返回、地球轨道不交会-月球轨道交会,以及地球轨道不交会-月球轨道不交会四类,并对各自可能的演变登月方式进行了分析。对载人登月的质量规模及运载火箭需求进行了分析,讨论并比较了一次发射、基于环月轨道交会组装和基于近地轨道交会组装方案的时间窗口和登月方案,并给出了建议。研究可为我国载人登月任务方案选取提供参考。  相似文献   

14.
Reduction of flight duration after insertion till docking to the ISS is considered. In the beginning of the human flight era both the USSR and the USA used short mission profiles due to limited life support resources. A rendezvous during these missions was usually achieved in 1–5 revolutions. The short-term rendezvous were made possible by the coordinated launch profiles of both rendezvousing spacecraft, which provided specific relative position of the spacecraft or phase angle conditions. After the beginning of regular flights to the orbital stations these requirements became difficult to fulfill. That is why it was decided to transfer to 1- or 2-day rendezvous profile. The long stay of a crew in a limited habitation volume of the Soyuz-TMA spacecraft before docking to the ISS is one of the most strained parts of the flight and naturally cosmonauts wish to dock to the ISS as soon as possible. As a result of previous studies the short four-burn rendezvous mission profile with docking in a few orbits was developed. It is shown that the current capabilities of the Soyuz-FG launch vehicle and the Soyuz-TMA spacecraft are sufficient to provide for that. The first test of the short rendezvous mission during Progress cargo vehicle flight to the ISS is planned for 2012. Possible contingencies pertinent to this profile are described. In particular, in the majority of the emergency cases there is a possibility of an urgent transfer to the present 2-day rendezvous profile. Thus, the short mission will be very flexible and will not influence the ISS mission plan. Fuel consumption for the nominal and emergency cases is defined by statistical simulation of the rendezvous mission. The qualitative analysis of the short-term and current 2-day rendezvous missions is performed.  相似文献   

15.
Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles’ deployment was confirmed. After a successful cruise, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec. 7, 2010. The engine shut down before the planned reduction in speed to achieve. The spacecraft did not enter the Venus orbit but entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken and unusable. However, we have found an alternate way of achieving orbit by using only the reaction control system (RSC). We had adopted the alternate way for orbital maneuver and three minor maneuvers in Nov. 2011 were successfully done so that AKATSUKI would meet Venus in 2015. We are considering several scenarios for VOI using only RCS.  相似文献   

16.
航天器交会对接发射时间的选择与确定   总被引:2,自引:0,他引:2  
朱仁璋  蒙薇  林彦 《宇航学报》2005,26(4):425-430
在航天器交会对接飞行试验中,追踪飞船与目标飞船发射时间的选择不是独立的,而是相互关联的,并且涉及多方面因素,如轨道共面要求、对太阳电池帆板的日照角限制以及最终平移段目标飞船的照明需求等。综合考虑这些约束条件,提出追踪飞船与目标飞船发射时间选择与确定的方法,并以图表形式给出许多模拟计算结果,对航天器交会对接设计与飞行试验具有应用价值。  相似文献   

17.
《Acta Astronautica》2003,52(2-6):281-287
Genesis is the fifth mission selected as part of NASA's Discovery Program. The objective of Genesis is to collect solar wind samples for a period of approximately 2 years while in a halo orbit about the Sun–Earth colinear libration point, L1, located between the Sun and Earth. At the end of this period, the spacecraft follows a free-return trajectory with the samples delivered to a specific recovery point on the Earth for subsequent analysis. This type of sample return has never been attempted before and presents a formidable challenge, particularly with regard to planning and execution of propulsive maneuvers. Moreover, since the original inception, additional challenges have arisen as a result of emerging spacecraft design concerns and operational constraints. This paper will describe how these challenges have been met to date in the context of the better-faster-cheaper paradigm. [This paper addresses an earlier mission design, as of May 2000.]  相似文献   

18.
In the early to mid-2000s, NASA made substantial progress in the development of solar sail propulsion systems. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems were designed for large robotic spacecraft. Recently, however, NASA has been investigating the application of solar sails for small satellite propulsion. The NanoSail-D is a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. This paper will present an introduction solar sail propulsion systems and an overview of the NanoSail-D spacecraft.  相似文献   

19.
Jennifer R. Tanzman   《Acta Astronautica》2008,63(11-12):1239-1245
Solar TErrestrial RElations Observatory (STEREO), the third mission in NASA's Solar Terrestrial Probes program, launched aboard a single Delta II 7925 launch vehicle on October 25, 2006 from Cape Canaveral. This two-year mission employs two nearly-identical, space-based observatories, one ahead of the Earth in its orbit, and the other trailing behind, to provide the first stereoscopic measurements of the sun and its coronal mass ejections, or CMEs. The STEREO observatories utilize four sets of solar arrays, each of which experienced a two-stage deployment on-orbit. This paper illustrates material considerations in the solar array subsystem design. It first focuses on the solar array substrate, considering material coefficient of thermal expansion (CTE) concerns when choosing a substrate laminate to which the solar cells will adhere. It then explores a similar issue when choosing a substrate insert material. Next, the focus shifts to material considerations in the solar array hinge design. This design was driven not just by function, but by a host of different material considerations, ranging from mass savings to fabrication time and cost.  相似文献   

20.
《Acta Astronautica》1999,44(2-4):85-90
A robotic flyby mission to the planet Pluto is being planned for launch early in the next decade. The spacecraft will continue on out of the solar system in an almost radial direction traveling at about four AU per year and begin transiting the Kuiper Belt shortly after Pluto encounter. Recent discoveries and observations of Kuiper Belt objects have generated increased interest in the characteristics of these bodies. This paper examines the opportunities and requirements for extending the Pluto mission to include the search for, and encounters with, objects in the Kuiper Disk at 40+ AU. The trajectory and ΔV requirements will be presented. An automated, on-board sky survey will be proposed to inventory the Kuiper objects in the vicinity of the flight path and to identify which objects are candidates for altering the trajectory for a close flyby. A possible Kuiper object encounter science scenario will be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号