首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate whether temperature sensitive EUV line ratios can be used as observational signatures for the presence of non-equilibrium ionization in transition region plasma. We compute the total intensity of some EUV lines of carbon and oxygen expected from coronal loop models with a steady-state flow and which are known to have significant departures from ionization equilibrium, selecting lines whose intensity ratios are useful for deducing the electron temperature in the coronal plasma. We calculate the intensity ratios with and without the approximation of ionization equilibrium, in order to determine the effects of any deviations from equilibrium on the numerical values of the line ratios examined.  相似文献   

2.
《中国航空学报》2020,33(9):2329-2341
The Pulsed Inductive Thruster (PIT) has the advantages of repeatable startup, no corruption and in-situ propellant feed. To study the flow expansion and circuit characteristics of PITs, the circuit-fluid model is developed, and the high temperature thermodynamic and transport models are combined with the circuit-fluid model to predict the critical plasma parameters. The flow fields of initial mass of 2–8 mg and charge voltages of 10–14 kV are simulated. Comparison of the flow fields of argon and helium propellants suggests that, the flow field structures are similar. Slight differences exist on the magnitude of the density and magnetic field, caused by larger velocity in lighter atom case and difference on the ionization gap between adjacent ionization levels. Analysis of the circuit characteristics by the two-dimensional results indicates that the ratio of coil inductance to circuit inductance affects both the rise rate and phase of the plasma current, the larger the ratio, the greater the rise rate and the better the following characteristic. The calculations show that the magnetic energy obtained within the decoupling distance determines the overall performance the thruster can be obtained; self-induced field maintained by the thermal motion after the main pulse leads to the long attenuation process and difference on the total impulse when the angle of conical pylon is varied under constant coil dimension.  相似文献   

3.
基于激波风洞的超声速磁流体动力技术实验系统   总被引:10,自引:1,他引:9  
李益文  李应红  张百灵  金迪  陈峰  朱涛 《航空学报》2011,32(6):1015-1024
开展磁流体(MHD)动力技术实验研究,实验系统必须满足两项基本的条件:一是超声速或高超声速气流;二是气流必须是导电流体.基于此,介绍了基于激波风洞的超声速磁流体动力技术实验系统的基本组成、设计思想和调试情况.设计了马赫数Ma=2的超声速喷管及实验段;采用氦气驱动氩气,在平衡接触面运行方式下得到高温气体,通过在低压段注入...  相似文献   

4.
Dynamics play an important role in defining the characteristics of the Venus ionosphere. The absence of a significant internal magnetic field at Venus allows the ionization to respond freely to gradients in the plasma pressure. The primary response to a gradient in plasma pressure is the nightward flow of the ionization away from a photoionization source on the dayside. The flow is approximately symmetric about the Sun-Venus axis and provides the source of O+ that maintains the nightside ionosphere during solar maximum. Modelling efforts have generally been successful in describing the average nightward ion velocity. Asymmetric and temporally-variable flow is measured, but is not well described by the models. Departures from axially-symmetric flow described in this paper include ionospheric superrotation at low altitudes and an enhanced flow at high altitude at the dawn terminator. Variability that is the result of changes in the ionopause height induced by changes in solar wind dynamic pressure is especially strong on the nightside. Ion flow to the nightside is also reduced during solar minimum because of a depressed ionopause.  相似文献   

5.
The nitrogen flow characteristics around models is studied with a view to obtaining data which determine the physical state of the plasma. Among all possible techniques, the most adaptable to the special hot-shot conditions?electrostatic probes and VHF microwave reflectometry?is chosen. The experimental apparatus and results in nitrogen are described. The ionization is not homogenous during the shot; this result seems to confirm the assumption that the plasma flow is utilizable only after a delay of more than ten milliseconds following the shock formation period. The hot-shot utilization range is examined for this type of experiment.  相似文献   

6.
利用等离子体激励器作为改善气膜冷却效果的方法在近年来得到了初步研究,但现阶段改善程度依然有限.提出“月牙形凸台十等离子体激励器”新型气膜冷却结构,通过CFD计算方法分析常规圆形孑、带月牙形凸台和带等离子体气动激励等不同气膜冷却结构的流场特性、温度场特性和冷却效率.结果表明:在圆形孔气膜冷却结构中,流场中形成了肾形涡对,由于肾形涡对使得冷流抬离壁面以及卷吸热流的作用,壁面的冷却效果最差;冷流经过等离子体激励器或月牙形凸台后,流场产生了反肾形涡对,抑制了肾形涡对的结构尺寸和强度,与圆形孔气膜冷却结构相比,气膜冷却效果在展向和流向上得到较大改善;在“月牙形凸台十等离子体激励器”气膜冷却结构中,冷热流掺混后形成的反肾形涡对强度最大,并且显著提高了孔间区域的冷却效率,在各吹风比下气膜冷却效果最佳.  相似文献   

7.
We present a study of stationary flows in closed solar coronal loops. The hydrodynamic differential equations of plasma flow and energy balance are integrated with algorithms which achieve high reliability. We present here results on the detailed synthesis of loop emission in specific bands and lines, taking into account also non-equilibrium ionization.  相似文献   

8.
介绍了氦质谱检漏的原理,基于氦质谱检漏技术,提出面向机翼整体油箱的检漏方案,包括粗漏检测方法和细漏检测方法,在此基础上,开展氦气-航空煤油泄漏对比试验,确定了能够应用于生产的初步标准。  相似文献   

9.
马蹄形等离子体激励器强化气膜冷却效率机理   总被引:4,自引:1,他引:3  
为揭示马蹄形等离子体激励器产生的等离子体气动激励提高气膜冷却效率的机理,选取常规圆形气膜孔冷却结构进行了数值模拟比较.结果表明:马蹄形等离子体激励器产生的等离子体气动激励效果可以使射流具有展向扩张能力,肾形涡对的大小及强度得到显著改变,同时受等离子体气动激励产生的下拉诱导和水平加速效果影响,射流贴壁性及覆盖区域大大提高,冷却效率得到强化;相对于圆形气膜孔冷却效果,马蹄形介质阻挡放电气膜冷却结构在吹风比为0.5,1.0和1.5时,冷却效率值相差最大处分别提高了165%,148%和500%.   相似文献   

10.
Experiments on film cooling with sonic injection into a supersonic flow   总被引:3,自引:2,他引:1  
ZHANG Ji  SUN Bing 《航空动力学报》2015,30(5):1084-1091
Film cooling experiments with sonic injection were conducted to investigate the effects of the number of the injection holes, the mass flow ratio, and the hole spacing on the film cooling effectiveness. The mainstream was obtained by the hydrogen-oxygen combustion, entering the experimental section at a Mach number of 2.0. The nitrogen with ambient temperature was injected into the experimental section at a sonic speed. The measured mainstream recovery temperature was approximately 910K. The mass flow ratio was regulated by varying the nitrogen injection pressure. The experimental results show that for the investigated cooling surface, the cooling effectiveness increases with the increase in the number of the injection holes with other parameters held constant. For a fixed cooling configuration, the cooling effectiveness increases with the increase in the mass flow ratio. Different from the subsonic film cooling, the optimal mass flow ratio is not observed. When the hole spacing is less than 4, no obvious difference is observed on the cooling effectiveness and lateral uniformity. With the mass flow ratio increasing further, this difference becomes much smaller. The shock wave also has an effect on the cooling effectiveness. Downstream the incident point of the shock wave, the cooling effectiveness is lower than that in the case without the shock wave.  相似文献   

11.
Some of the main problems of solar wind expansion are addressed. Emphasis is placed on solar wind acceleration and the mass flux problem. It is demonstrated how these two properties of the flow depend on other plasma parameters such as temperature, density and helium abundance. The importance of placing constraints on a given solar wind flow in the inner corona and at larger distances from the sun simultaneously, is also shown. Whether and how these constraints can be derived from observations carried out by SOHO instruments is then discussed.  相似文献   

12.
Space plasmas are host to the electrostatic Langmuir waves and a rich range of processes associated with them. Many of such processes that are of interest in micro-scale plasma physics and magnetosphere-ionosphere physics are open to investigation via incoherent scatter plasma lines—i.e., a pair of resonant peaks in the incoherent scatter radar (ISR) spectrum, symmetrically displaced from the radar transmitting frequency by about the plasma frequency, as the signature of Langmuir waves in the ISR spectrum. There now exists a large body of literature devoted to the investigation of a number of topics in ionospheric physics via plasma line theory and observation. It is the goal of this work to provide a comprehensive review of this literature, from the early theoretical works on oscillations in magnetized plasma to the recent advances in plasma line measurements and applications. This review includes detailed theoretical discussions on the intensity and frequency displacement of plasma lines. It reviews the experimental observations of plasma lines enhanced by various sources of energy and discusses the implications of the observations in the context of ionospheric physics. The review also covers the practical aspects of plasma line measurements, from measurement techniques to the applications of plasma lines in estimating the bulk parameters of the ionosphere.  相似文献   

13.
A disconcerting mismatch of thermal pressures for two media in contact with each other, (1) the warm, Circum-Heliospheric Interstellar Medium (CHISM) and (2) the very hot material within a much larger region called the Local Bubble (LB), has troubled astronomers for over two decades. A possible resolution of this problem, at least in part, now seems possible. We now understand that earlier estimates for the average electron density in the very hot LB plasma were inflated by an unrecognized foreground contamination to the low energy diffuse X-ray background measurements. This foreground illumination arises from photons emitted by charge exchange reactions between solar wind ions and neutral atoms from the interstellar medium that enter into the heliosphere. However, with the resolution of this problem comes a new one. The high ionization fraction of helium in the CHISM, relative to that of hydrogen, could be understood in terms of the effects from a strong flux of EUV and X-ray radiation coming from both the Local Bubble and a conductive interface around the CHISM. A revision of this interpretation may now be in order, now that the photoionization rate from radiation emitted by hot gas the Local Bubble is lower than previously assumed.  相似文献   

14.
This paper summarizes space probe observations relevant to the determination of the large-scale, three-dimensional structure of the solar wind and its solar cycle variations. Observations between 0.6 and 5 AU reveal very little change in the average solar-wind velocity, but a pronounced decrease in the spread of velocities about the average. The velocity changes may be accompanied by a transfer of energy from the electrons to the protons. The mass flux falls off approximately as the inverse square of distance as expected for spherically symmetric flow. Measurements of the interplanetary magnetic field show that the spiral angle is well defined over this entire range of distances, but there is some evidence that the spiral may wind up more slowly with distance from the Sun than predicted by Parker's model. The variances or noise in the field and plasma have also been measured as a function of radial distance.During the rising portion of the solar-activity cycle, the solar-wind velocity showed a pronounced positive correlation with solar latitude over the range ±7°. Several other plasma parameters which have been found generally to correlate (or anticorrelate) with velocity also showed a latitude variation; these parameters include the density, percent helium, and azimuthal flow direction. The average polarity and the north-south component of the magnetic field depend on the solar hemisphere in which the measurements are made.Dependence on the phase of the solar-activity cycle can be found in the data on the number of high speed streams, the proton density, the percent helium, and the magnetic-field strength and polarity.  相似文献   

15.
This paper provides an overview of the physics and design of single dielectric barrier discharge (SDBD) plasma actuators for enhanced aerodynamics in a variety of applications. The actuators consist of two electrodes, one exposed to the air and the other covered by a dielectric material. The electrodes are supplied with an ac voltage that at high enough levels, causes the air over the covered electrode to ionize. The ionization of the air is a dynamic process within the ac cycle. The ionized air, in the presence of the electric field produced by the electrode geometry, results in a body force vector that acts on the ambient air. The body force is the mechanism for active aerodynamic control. The body force per unit volume of plasma has been derived from first principles and implemented in numerical flow simulations. This utilizes models for the time and space dependence of the air ionization on the input voltage amplitude, frequency, electrode geometry and dielectric properties that have been developed and bench-marked with experiments. The experiments and model suggest approaches that can maximize the performance of the plasma actuators. A sample implementation of an actuator model in a numerical flow simulation consisting of leading-edge separation control on an airfoil along with an experimental benchmark is then presented.  相似文献   

16.
The present study proposes a segmented cooling-stream injection structure based on a certain coolant mass flow rate, and numerically investigates the effect of segmented cooling-stream injection on supersonic film cooling. The results indicate that without shock-wave impingement and with helium as the coolant, segmented cooling-stream injection can reduce the mixing between the mainstream and the cooling stream to produce better cooling performance than single injection, especially at larger coo...  相似文献   

17.
为探究不同气体条件下螺旋波电推进器等离子体源的放电特征,开展了氩气、氦气和氮气放电的光谱诊断实验研究。氩气和氦气为工质气体的放电条件下,部分波长谱线相对强度随功率的增加而增强,且斜率出现两次跳变,考虑是螺旋波放电过程中的模式转换,即容性向感性、感性向波模式的转换。三种工质气体,在较低的压强下,各谱线强度均随压强增大而迅速增强,但氩气放电下压强继续增大达到1.0Pa以后,谱线强度增强趋势变缓甚至达到“饱和”状态,而氦气和氮气放电下压强增大到0.5~0.65Pa,谱线强度出现降低趋势,氦气和氮气放电强度对压强更为敏感。  相似文献   

18.
The acceleration of charged particles in the magnetic current sheets downstream from magnetic neutral lines is discussed and related to the plasma populations expected to be formed in a simple open model magnetosphere. A simple model of plasma acceleration in the dayside current sheet is set up, and it is shown that magnetospheric particles may take up a considerable fraction of the electromagnetic energy dissipated in the sheet even though they may represent only a small fraction of the total particle influx. The process should result in energetic ring current and ionospheric particles being found in boundary layers on either side of the magnetopause, and accelerated ionospheric particles in the plasma mantle. Acceleration of magnetosheath plasma in the dayside current sheet should result in enhanced flow speeds in these boundary layers, but the process may amount to little more than a return to the sheath plasma of energy previously extracted from it during its inflow on the dayside and stored in the compressed sheath field, due to the appreciable energy take-up from the current sheet by magnetospheric particles. The energy separation between ionospheric plasma and magnetosheath plasma on cusp field lines is shown to result in a spatial separation of polar wind and plasma mantle populations in the tail, the polar wind ions usually reaching out to only a few tens of R E down-tail such that they usually remain on closed field lines, forming a wedge-shaped region within the mantle shadow-zone. Polar wind ions are then convected back towards the Earth and thus their major sink is via the dayside current sheet rather than outflow into the tail. The major source for the plasmasheet depends upon the location of the neutral line, but mantle ions may usually be dominant. However, with a near-Earth neutral line during disturbed periods ionospheric plasma will be the sole ring-current source. Under usual conditions with a more distant neutral line the spatial separation of the two plasma sources in the tail may result in an energy separation in the inner ring current, with ionospheric particles dominant up to 2 to 20 keV and mantle ions dominant at higher energies. Formation of the plasmasheet is discussed, and it is shown that a layer of ions unidirectionally streaming towards the Earth should be formed on its outer boundary, due to current sheet acceleration of lobe particles and inward convection of the field lines. A similar process leads to earthward flows on the inner layer of the dayside cusp. Finally, the region tailward of the nightside neutral line is discussed and it is shown that a thin tailward flowing two-stream plasma band should be formed across the centre plane of the tail. The slow-speed stream corresponds to incoming lobe ions, the faster stream to the current sheet accelerated ions.  相似文献   

19.
Investigation of the steam-cooled blade in a steam turbine cascade   总被引:2,自引:0,他引:2  
With the increasing demand for electricity,an efficiency improvement and thereby reduced CO2 emissions of the coal-fired plants are expected in order to reach the goals set in the Kyoto protocol.It can be achieved by a rise of the process parameters.Currently,live steam pressures and temperatures up to 300 bars and 923 K are planned as the next step.Closed circuit steam cooling of blades and vanes in modern steam turbines is a promising technology in order to establish elevated live steam temperatures in future steam turbine cycles.In this paper,a steam-cooled test vane in a cascade with external hot steam flow is analyzed numerically with the in-house code CHTflow.A parametric analysis aiming to improve the cooling effectiveness is carried out by varying the cooling mass flow ratio.The results from two investigated cases show that the steam cooling technique has a good application potential in the steam turbine.The internal part of the vane is cooled homogeneously in both cases.With the increased cooling mass flow rate,there is a significant improvement of cooling efficiency at the leading edge.The results show that the increased cooling mass flow ratio can enhance the cooling effectiveness at the leading edge.With respect to trailing edge,there is no observable improvement of cooling effectiveness with the increased cooling mass flow.This implies that due to the limited dimension at the trailing edge,the thermal stress cannot be decreased by increasing the cooling mass flow rate.Therefore,impingement-cooling configuration at the trailing edge might be a solution to overcome the critical thermal stress there.It is also observed that the performance of the cooling effective differs on pressure side and suction side.It implicates that the equilibrium of the cooling effectiveness on two sides are influenced by a coupled relationship between cooling mass flow ratio and hole geometry.In future work,optimizing the hole geometry and cooling steam supply conditions might be the solutions for an equivalent cooling effectiveness along whole profile.   相似文献   

20.
Goedbloed  J.P. 《Space Science Reviews》2003,107(1-2):353-360
The properties of magnetohydrodynamic waves and instabilities of laboratory and space plasmas are determined by the overall magnetic confinement geometry and by the detailed distributions of the density, pressure, magnetic field, and background velocity of the plasma. Consequently, measurement of the spectrum of MHD waves (MHD spectroscopy) gives direct information on the internal state of the plasma, provided a theoretical model is available to solve the forward as well as the inverse spectral problems. This terminology entails a program, viz. to improve the accuracy of our knowledge of plasmas, both in the laboratory and in space. Here, helioseismology (which could be considered as one of the forms of MHD spectroscopy) may serve as a luminous example. The required study of magnetohydrodynamic waves and instabilities of both laboratory and space plasmas has been conducted for many years starting from the assumption of static equilibrium. Recently, there is a outburst of interest for plasma states where this assumption is violated. In fusion research, this interest is due to the importance of neutral beam heating and pumped divertor action for the extraction of heat and exhaust needed in future tokamak reactors. Both result in rotation of the plasma with speeds that do not permit the assumption of static equilibrium anymore. In astrophysics, observations in the full range of electromagnetic radiation has revealed the primary importance of plasma flows in such diverse situations as coronal flux tubes, stellar winds, rotating accretion disks, and jets emitted from radio galaxies. These flows have speeds which substantially influence the background stationary equilibrium state, if such a state exists at all. Consequently, it is important to study both the stationary states of magnetized plasmas with flow and the waves and instabilities they exhibit. We will present new results along these lines, extending from the discovery of gaps in the continuous spectrum and low-frequency Alfvén waves driven by rotation to the nonlinear flow patterns that occur when the background speed traverses the full range from sub-slow to super-fast. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号