首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.  相似文献   

2.
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.  相似文献   

3.
A 34-day functional test was conducted in Johnson Space Center's Variable Pressure Growth Chamber (VPGC) to determine responses of a wheat stand to reduced pressure (70 kPa) and modified partial pressures of carbon dioxide and oxygen. Reduced pressure episodes were generally six to seven hours in duration, were conducted at reduced ppO2 (14.7 kPa), and were interrupted with longer durations of ambient pressure (101 kPa). Daily measurements of stand net photosynthesis (Pn) and dark respiration (DR) were made at both pressures using a ppCO2 of 121 Pa. Corrections derived from leakage tests were applied to reduced pressure measurements. Rates of Pn at reduced pressure averaged over the complete test were 14.6% higher than at ambient pressure, but rates of DR were unaffected. Further reductions in ppO2 were achieved with a molecular sieve and were used to determine if Pn was enhanced by lowered O2 or by lowered pressure. Decreased ppO2 resulted in enhanced rates of Pn, regardless of pressure, but the actual response was dependent on the ratio of ppO2/ppCO2. Over the range of ppO2/ppCO2 of 80 to 200, the rate of Pn declined linearly. Rate of DR was unaffected over the same range and by dissolved O2 levels down to 3.1 ppm, suggesting that normal rhizosphere and canopy respiration occur at atmospheric ppO2 levels as low as 11 kPa. Partial separation of effects attributable to oxygen and those related to reduced pressure (e.g. enhanced diffusion of CO2) was achieved from analysis of a CO2 drawdown experiment. Results will be used for design and implementation of studies involving complete crop growth tests at reduced pressure.  相似文献   

4.
5.
Wheat, potato, pea and tomato crops were cultivated from seeding to harvest in a controlled and confined growth chamber at elevated CO2 concentration (3700 microL L-1) to examine the effects on biomass production and edible part yields. Different responses to high CO2 were recorded, ranging from a decline in productivity for wheat, to slight stimulation for potatoes, moderate increase for tomatoes, and very large enhancement for pea. Mineral content in wheat and pea seeds was not greatly modified by the elevated CO2. Short-term experiments (17 d) were conducted on potato at high (3700 microL L-1) and very high (20,000 microL L-1) CO2 concentration and/or low O2 partial pressure (approximately 20,600 microL L-1 or 2 kPa). Low O2 was more effective than high CO2 in total biomass accumulation, but development was affected: Low O2 inhibited tuberization, while high CO2 significantly increased production of tubers.  相似文献   

6.
To obtain basic data for adequate air circulation for promoting plant growth in closed plant production modules in bioregenerative life support systems in space, effects of air velocities ranging from 0.1 to 0.8 m s-1 on photosynthesis in tomato seedlings canopies were investigated under atmospheric CO2 concentrations of 0.4 and 0.8 mmol mol-1. The canopy of tomato seedlings on a plug tray (0.4 x 0.4 m2) was set in a wind-tunnel-type chamber (0.6 x 0.4 x 0.3 m3) installed in a semi-closed-type assimilation chamber (0.9 x 0.5 x 0.4 m3). The net photosynthetic rate in the plant canopy was determined with the differences in CO2 concentrations between the inlet and outlet of the assimilation chamber multiplied by the volumetric air exchange rate of the chamber. Photosynthetic photon flux (PPF) on the plant canopy was kept at 0.25 mmol m-2 s-1, air temperature at 23 degrees C and relative humidity at 55%. The leaf area indices (LAIs) of the plant canopies were 0.6-2.5 and plant heights were 0.05-0.2 m. The net photosynthetic rate of the plant canopy increased with increasing air velocities inside plant canopies and saturated at 0.2 m s-1. The net photosynthetic rate at the air velocity of 0.4 m s-1 was 1.3 times that at 0.1 m s-1 under CO2 concentrations of 0.4 and 0.8 mmol mol-1. The net photosynthetic rate under CO2 concentrations of 0.8 mmol mol-1 was 1.2 times that under 0.4 mmol mol-1 at the air velocity ranging from 0.1 to 0.8 m s-1. The results confirmed the importance of controlling air movement for enhancing the canopy photosynthesis under an elevated CO2 level as well as under a normal CO2 level in the closed plant production modules.  相似文献   

7.
A Variable Pressure Plant Growth Chamber (VPGC), at the Johnson Space Center's (JSC) ground-based Regenerative Life Support Systems (RLSS) test bed, was used to produce crops of soil-grown lettuce. The crops and chamber were analyzed for microbiological diversity during lettuce growth and after harvest. Bacterial counts for the rhizosphere, spent nutrient medium, heat exchanger condensate, and atmosphere were approximately 10(11) Colony Forming Units (CFU) g-1 10(5) CFU ml-1, 10(5) CFU ml-1, and 600 CFU m-3, respectively. Pseudomonas was the predominant bacterial genus. Numbers of fungi were about 10(5) CFU g-1 in the rhizosphere, 4-200 CFU ml-1 in the spent nutrient medium, 110 CFU ml-1 in the heat exchanger condensate, and 3 CFU m-3 in the atmosphere. Fusarium and Trichoderma were the predominant fungal genera.  相似文献   

8.
Soybean and potato plants were grown in controlled environments at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa. The highest yields of edible biomass occurred at 0.10 kPa for both species, with higher CO2 levels being supraoptimal, but not injurious to the plants. Stomatal conductance rates of upper canopy leaves were lowest at 0.10 kPa CO2, while conductance rates at 0.50 and 1.00 kPa were significantly greater than 0.10 kPa. Total water use by the plants was greatest at the highest CO2 pressures (i.e. 0.50 and 1.00 kPa); consequently, water use efficiencies (biomass produced/water used) were low at the highest CO2 pressures. Based on previous CO2 studies in the literature, the increased conductance and water use at the highest CO2 pressures were surprising and pose interesting challenges for managing plants in a CELSS, where CO2 pressures may exceed optimal levels.  相似文献   

9.
An initial experiment in the Laboratory Biosphere facility, Santa Fe, New Mexico, was conducted May-August 2002 using a soil-based system with light levels (at 12 h per day) of 58-mol m-2 d-1. The crop tested was soybean, cultivar Hoyt, which produced an aboveground biomass of 2510 grams. Dynamics of a number of trace gases showed that methane, nitrous oxide, carbon monoxide, and hydrogen gas had initial increases that were substantially reduced in concentration by the end of the experiment. Methane was reduced from 209 ppm to 11 ppm, and nitrous oxide from 5 ppm to 1.4 ppm in the last 40 days of the closure experiment. Ethylene was at elevated levels compared to ambient during the flowering/fruiting phase of the crop. Soil respiration from the 5.37 m2 (1.46 m3) soil component was estimated at 23.4 ppm h-1 or 1.28 g CO2 h-1 or 5.7 g CO2 m-2 d-1. Phytorespiration peaked near the time of fruiting at about 160 ppm h-1. At the height of plant growth, photosynthesis CO2 draw down was as high as 3950 ppm d-1, and averaged 265 ppm h-1 (whole day averages) during lighted hours with a range of 156-390 ppm h-1. During this period, the chamber required injections of CO2 to continue plant growth. Oxygen levels rose along with the injections of carbon dioxide. Upon several occasions, CO2 was allowed to be drawn down to severely limiting levels, bottoming at around 150 ppm. A strong positive correlation (about 0.05 ppm h-1 ppm-1 with r2 about 0.9 for the range 1000-5000 ppm) was observed between atmospheric CO2 concentration and the rate of fixation up to concentrations of around 8800 ppm CO2.  相似文献   

10.
Radish (Raphanus sativus), lettuce (Latuca sativa), and wheat (Triticum aestivum) plants were grown at either 98 kPa (ambient) or 33 kPa atmospheric pressure with constant 21 kPa oxygen and 0.12 kPa carbon dioxide in atmospherically closed pressure chambers. All plants were grown rockwool using recirculating hydroponics with a complete nutrient solution. At 20 days after planting, chamber pressures were pumped down as rapidly as possible, reaching 5 kPa after about 5 min and ∼1.5 kPa after about 10 min. The plants were held at 1.5 kPa for 30 min and then pressures were restored to their original settings. Temperature (22 °C) and humidity (65% RH) controls were engaged throughout the depressurization, although temperatures dropped to near 16 °C for a brief period. CO2 and O2 were not detectable at the low pressure, suggesting that most of the 1.5 kPa atmosphere consisted of water vapor. Following re-pressurization, plants were grown for another 7 days at the original pressures and then harvested. The lettuce, radish, and wheat plants showed no visible effects from the rapid decompression, and there were no differences in fresh or dry mass when compared to control plants maintained continuously at 33 or 98 kPa. But radish storage root fresh mass and lettuce head fresh and dry masses were less at 33 kPa compared to 98 kPa for both the controls and decompression treatment. The results suggest that plants are extremely resilient to rapid decompression, provided they do not freeze (from evaporative cooling) or desiccate. The water of the hydroponic system was below the boiling pressure during these tests and this may have protected the plants by preventing pressures from dropping below 1.5 kPa and maintaining humidity near 1.5 kPa. Further testing is needed to determine how long plants can withstand such low pressure, but the results suggest there are at least 30 min to respond to catastrophic pressure losses in a plant production chamber that might be used for life support in space.  相似文献   

11.
Two CELSS candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. With the exception of increased crude fiber of soybean seed with increased CO2, no trends were apparent with regard to CO2 effects on proximate composition of soybean seed and potato tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.  相似文献   

12.
A simplified closed system consisting of a plant growth chamber coupled to a decomposition chamber was used to study carbon exchange dynamics. The CO2 produced via the decomposition of wheat straw was used for photosynthetic carbon uptake by wheat plants. The atmosphere of the two chambers was connected through a circuit of known flow rate. Thus, monitoring the CO2 concentrations in both compartments allowed measurement of the carbon exchange between the chambers, and estimation of the rate of respiration processes in the decomposition chamber and photosynthetic rate in the producer chamber. The objective for CELSS research was to simulate a system where a compartment producing food via photosynthesis, would be supplied by CO2 produced from respiration processes. The decomposition of biomass by the decomposer simulated both the metabolism of a crew and the result of a recycling system for inedible biomass. Concerning terrestrial ecosystems, the objective was to study organic matter decomposition in soil and other processes related to permanent grasslands.  相似文献   

13.
As part of a Bio-regenerative Life Support System (BLSS) for long-term space missions, plants will likely be grown at reduced pressure. This low pressure will minimize structural requirements for growth chambers on missions to the Moon or Mars. However, at reduced pressures the diffusivity of gases increases. This will affect the rates at which CO2 is assimilated and water is transpired through stomata. To understand quantitatively the possible effects of reduced pressure on plant growth, CO2 and H2O transport were calculated for atmospheres of various total pressures (101, 66, 33, 22, 11 kPa) and CO2 concentrations (0.04, 0.1 and 0.18 kPa). The diffusivity of a gas is inversely proportional to total pressure and shows dramatic increases at pressures below 33 kPa (1/3 atm). A mathematical relationship based on the principle of thermodynamics was applied to low pressure conditions and can be used for calculating the transpiration and photosynthesis of plants grown in hypobaria. At 33 kPa total pressure, the stomatal conductance increases by a factor of three with the boundary layer conductance increasing by a factor of ∼1.7, since the leaf conductance is a function of both stomatal and the boundary layer conductance, the overall conductance will increase resulting in significantly higher levels of transpiration as the pressure drops. The conductance of gases is also regulated by stomatal aperture in an inverse relationship. The higher CO2 concentration inside the leaf air space during low pressure treatments may result in higher CO2 assimilation and partial stomata closure, resulting in a decrease in transpiration rate. The results of this analysis offer guidelines for experiments in pressure and high CO2 environments to establish ideal conditions for minimizing transpiration and maximizing the plant biomass yield in BLSS.  相似文献   

14.
In this study, spinach plants were grown under atmospheric and low pressure conditions with constant O2 and CO2 partial pressures, and the effects of low total pressure on gas exchange rates were investigated. CO2 assimilation and transpiration rates of spinach grown under atmospheric pressure increased after short-term exposure to low total pressure due to the enhancement of leaf conductance. However, gas exchange rates of plants grown at 25 kPa total pressure were not greater than those grown at atmospheric pressure. Stomatal pore length and width were significantly smaller in leaves grown at low total pressure. This result suggested that gas exchange rates of plants grown under low total pressure were not stimulated even with the enhancement of gas diffusion because the stomatal size and stomatal aperture decreased.  相似文献   

15.
高空代偿服充压后会限制人体的活动,为探讨在不同压力水平下代偿服对人体作业工效的影响,进行了力学工效分析,主要包括力量测试、基于Vicon460三维运动捕捉系统下的活动范围和操作灵活性测试,并且针对耐受性和灵活性进行了主观测试.结果表明:①代偿服加压对作业工效产生显著影响(P<0.05),肩关节、髋关节比较敏感,1.96 kPa下降幅分别达62.2%和42.3%,10.49 kPa下肩关节后展降幅最大,为83.1%,其次是颈关节转动,为63.3%;②上肢受压力影响比下肢严重;③力量测试影响较小(P>0.05);④主观测试结果与客观数据一致,能够反映人体对不同代偿加压值的反应.其结果可为高空代偿服的评价和性能改善提供基础性资料,具有一定实际意义和应用价值.   相似文献   

16.
Atmospheric leakage between a CELSS and its surround is driven by the differential pressure between the two. In an earth-based CELSS, both negative and positive differential pressures of atmosphere are created as the resultant of three influences: thermal expansion/contraction, transition of water between liquid and vapor phases, and external barometric pressure variations. The resultant may typically be on the order of 5000 pascals. By providing a flexible expansion chamber, the differential pressure range can be reduced two, or even three, orders of magnitude, which correspondingly reduces the leakage. The expansion chamber itself can also be used to measure the leak rate. Independent confirmation is possible by measurement of the progressive dilution of a trace gas. These methods as employed at the Biosphere 2 facility have resulted in an estimated atmospheric leak rate of less than 10 percent per year.  相似文献   

17.
为研究某型航天离心泵汽蚀特性,基于Mixture多相流模型与汽蚀模型相结合对长短复合叶轮离心泵内乙二醇水溶液进行不同的进口负压下汽液两相定常数值模拟并进行不同进口压力下的汽蚀性能特性试验,结果表明汽化区域随进口负压的增大而扩大。当进口负压在-50kPa,泵进出口压差在155kPa,已经接近额定压差的3%限制范围,此时离心泵的出口压力105kPa为临界汽蚀出口压力;进口负压到-60kPa时,出口流量突变为300L/h,该泵产生临界汽蚀状态,小于技术要求的最小进口压力10kPa,因此该泵在其工作范围内不会发生汽蚀现象,并证得本文数值模拟的可靠性。  相似文献   

18.
Seven growth chamber trials (six replicate trials using 0.035, 0.12, and 0.25% CO2 in air and one trial using 0.12, 0.80, and 2.0% CO2 in air) and three replicate greenhouse trials (0.035, 0.10, 0.18, 0.26, 0.50, and 1.0% CO2 in air) compare the effects of super-optimal CO2 on the seed yield, harvest index, and vegetative growth rate of wheat (Triticum aestivum L. cvs. USU-Apogee and Veery-10). Plants in the growth chamber trials were grown hydroponically under fluorescent lamps, while the greenhouse trials were grown under sunlight and high pressure sodium lamps and in soilless media. Plants in the greenhouse trials responded similarly to those in the growth chamber trials; maximum yields occurred near 0.10 and 0.12% CO2 and decreased significantly thereafter. This research indicates that the toxic effects of elevated CO2 are not specific to only one environment and has important implications for the design of bio-regenerative life support systems in space, and for the future of terrestrial agriculture.  相似文献   

19.
The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce (Lactuca sativa L. cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa pO2pO2) or 101 kPa total pressure (20.9 kPa pO2pO2) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.  相似文献   

20.
When higher plants are exposed to elevated levels of CO2 for both short- and long-term periods photosynthetic C-gain and photoassimilate export from leaves are generally increased. Water use efficiency is increased on a leaf area basis. During long-term exposures, photosynthesis rates on leaf and whole plants bases are altered in a species specific manner. The most common pattern in C3 plants is an enhanced rate of whole plant photosynthesis in a well irradiated canopy. Nevertheless, in some herbaceous species prolonged exposure to high CO2 results in remobilization of nitrogenous reserves (i.e., leaf protein degradation) and reduced rates of mature leaf photosynthesis when assayed at ambient CO2 and O2 levels. Both short- and long-term exposures to those CO2 levels (i.e., 100 to 2,000 microliter l-1) which modify photosynthesis and export, also modify both endogenous ethylene gas (C2H4) release, and substrate, 1-aminocyclopropane-1-carboxylic acid (ACC), saturated C2H4 release rates from irradiated leaves. Photosynthetically active canopy leaves contribute most of the C2H4 released from the canopy. Prolonged growth at high CO2 results in a persistent increase in the rate of endogenous C2H4 release from leaves which can, only in part, be attributed to the increase of the endogenous pools of C2H4 pathway intermediates (e.g., methionine, M-ACC, and ACC). The capacity for increasing the rate of C2H4 release in response to short-term exposures to varying CO2 levels does not decline after prolonged growth at high CO2. When leaves, whole plants, and model canopies of tomato plants are exposed to exogenous C2H4 a reduction in the rate of photosynthesis can, in each case, be attributed to the classical effects of C2H4 on plant development and morphology. The effect of C2H4 on CO2 gas exchange of plant canopies is shown to be dependent on the canopy leaf area index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号