首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
提出用转子折合弯曲刚性考虑陀螺力矩影响的方法,用以进行转子临界转速及有关参数的计算。这一方法的特点是用转子的折合弯曲刚性将陀螺力矩的影响考虑进去,而认为转子并无陀螺力矩作用。因而可以利用不计陀螺力矩影响的一般公式来计算有陀螺力矩作用情况下的转子临界转速及与此有关的参数。应用这一方法推导公式非常简单,概念清楚易于了解。并使目前尚未见有方法计算的某些有关转子临界转速方面的参数可以计算并很简单。  相似文献   

2.
具有初始热变形的转子系统振动响应分析   总被引:1,自引:1,他引:0  
航空发动机热起动时的温度分布不均会使转子产生初始热变形,进而引起发动机振动过大,甚至导致起动失败。针对此问题,以航空发动机中的典型转子为对象,根据初始热变形对转子振动的影响建立相应的动力学方程,并通过模态坐标变换分析初始热变形对转子系统振动响应的影响。结果表明,初始热变形相当于对转子作用了附加激励,包括转轴初始弯曲激励、附加不平衡激励和附加陀螺力矩激励,上述激励均与转速同步。其中,附加不平衡激励和附加陀螺力矩激励大小与转速有关,对转子通过各阶临界转速的振动响应均有较大影响;转轴初始弯曲激励大小与转速无关,主要影响低阶临界转速的振动响应。   相似文献   

3.
航空发动机整机有限元模型转子动力学分析   总被引:21,自引:4,他引:17  
现代航空发动机在工作中不断变化的机械激振,气动激振频率越来越复杂,这使得对航空发动机振动分析必须考虑各结构间的动力影响.因此,利用能够考虑陀螺力矩影响,基于NASTRAN中实体单元编制的转子动力特性计算程序,对发动机整机进行了动力特性计算.首先对转子支承结构传递函数(动刚度)进行计算,并进一步研究其对转子动力特性的影响;分析比较基于不同单元模型计算时,盘轴耦合振动及盘轴连接处的角刚度对转子动力特性的影响,证明了基于实体单元的整机模型能够准确考虑各种振动模态.最后,在分析中发现了高阶转子弯曲振动模态与机匣振动耦合现象及其变化规律,在计算分析的基础上研究了在考虑机匣振动耦合时转子系统临界转速的确定方法.   相似文献   

4.
针对固定构型的控制力矩陀螺群无法灵活改变其合成角动量包络以适应卫星不同工况的姿态机动需求问题,设计了一种可变构型的控制力矩陀螺群控制方法。建立了可变构型的控制力矩陀螺群的动力学模型;在考虑控制力矩陀螺群框架角速度、高速转子转速以及构型倾角变化速率等多变量下,设计了可变构型的控制力矩陀螺群的操纵律;分析了构型倾角固定和构型倾角可变情形下的控制力矩陀螺群合成角动量包络和奇异状态分布情况。采用可变构型的控制力矩陀螺群进行了卫星多工况姿态敏捷机动控制。数学仿真校验表明,可变构型的控制力矩陀螺控制方法能够实现金字塔构型下不同数目的控制力矩陀螺故障时的卫星三轴敏捷机动控制。  相似文献   

5.
基于实体单元的转子动力特性计算方法   总被引:5,自引:0,他引:5  
现代航空发动机振动分析必须考虑各结构间的动力影响,因此,应该运用实体单元对发动机进行整机建模.为了在进行复杂转子系统动力特性分析时能够考虑陀螺力矩的影响,在对八节点六面体实体单元有限元动力方程推导的基础上,对通用有限元软件MSC/NASTRAN,利用DMAP语言进行二次开发,通过修改解题序列,加入陀螺力矩、科氏力和离心力的影响因素.在对典型结构计算分析的基础上,总结了转动结构振动的一些特点,通过对计算结果的对比,证明本程序在计算复杂旋转结构模型时能全面考虑壳体行波振动和转子进动的影响,指出了其在整机建模中的应用前景.   相似文献   

6.
针对磁悬浮控制敏感陀螺(MSCSG)空间应用问题,研究其多自由度角动量包络模型。依据MSCSG的机械结构,分析磁悬浮转子径向万向偏转特性,明晰MSCSG轴向一个自由度转子转速变化飞轮力矩和径向两自由度转子万向偏转陀螺力矩输出机理。基于洛伦兹力磁轴承(LFMB)原理,分析径向偏转力矩与控制电流的线性关系,揭示MSCSG陀螺力矩高精度高带宽的优势。考虑转子径向偏角和轴向转速饱和问题,基于重构偏角和旋转矩阵构建MSCSG角动量包络模型。仿真分析了MSCSG径向偏转力矩高精度高带宽、轴向飞轮力矩高精度的特性。开展MSCSG偏转力矩高带宽性能测试,实验验证MSCSG能够输出大于100 Hz的径向偏转力矩。研究结果表明,MSCSG具有航天器高动态微振动抑制和高精度姿态控制的空间应用前景。   相似文献   

7.
机器转子应用“柔轴”可使结构简单、重量轻、运转平稳,因此釆用“柔轴”大有好处。应用“柔轴”时的主要困难是保证转子平稳而又安全可靠地通过临界转速。目前可能用来作为这种安全装置的有转轴挠度限制器与挠曲阻尼器。后者虽能保证转子很平稳地通过临界转速,但其结构复杂、重量较大、可靠性能差。限制器则重量小、结构简单,但关于限制器的工作理论及选用方法还研究得很少,未见有关这方面的文献。本文根据初步实验与作者见解,提出限制器工作理论和应用这一理论,选用限制器间隙与位置的方法。本文基于一单盘双支点转子有一定的临界转速与挠度随转速变化的曲线,但当转轴与限制器接触时,这一转子便成为一特殊的“三支点”系统,此时临界转速与挠度变化曲线与前不同。由于这种原因转子通过临界转速时,轴便会在限制器中作剧烈的横向振动。在设计不当时发生这种振动的转子转速范围大,并且轴在较大的转速范围内均与限制器接触,轴在连接盘子处的挠度反而很大,限制器实际上没有限制挠度的作用。在正确设计情况下则与上述结果相反,根据这一理论提出选用限器间隙与限制器位置的方法。 研究中承曹玉璋与王树卿两同学参加计算和实验等工作,在此深表谢意。  相似文献   

8.
高姿态稳定度敏捷卫星的VSCMGs操纵律研究   总被引:2,自引:0,他引:2  
  研究采用变速控制力矩陀螺群(VSCMGs)作为姿态控制执行机构的高姿态稳定度敏捷卫星的操纵律设计问题。将VSCMG分为控制力矩陀螺(CMG)和动量轮(MW)两种工作模式,针对每种工作模式进行奇异性分析,并给出逃避奇异的方法。为了获得较好的控制效果,还研究了VSCMG群转子转速向标称转速平衡的方法以及通过调整转子轴构型使转子转速快速返回到标称值的方法。最后通过对算例进行仿真,验证了所设计的操纵律的有效性。  相似文献   

9.
共用支承-转子结构系统振动耦合特性分析   总被引:3,自引:0,他引:3  
针对带有涡轮级间共用承力框架的转子系统,为准确描述转子-共用支承-转子(简称共用支承-转子结构系统)之间的振动特性,采用转子截面横向和角向振动特性耦合动力学模型,振动耦合产生机理及影响规律进行研究。理论分析结果表明:转子支点的动态响应对其他转子的支点动刚度特性及转子振动响应特性具有一定影响,共用支承结构振动响应对转子系统振动特性的计算误差超过10%,因此,在共用支承-转子结构系统的临界转速和振动响应计算分析中,需要考虑2个转子与共用支承结构的振动耦合影响。对于涡轴发动机共用支承-转子结构系统的有限元仿真计算结果表明:由于存在共用承力框架,2个转子之间将发生振动耦合,系统产生耦合振型,某一转子转速将会影响另一转子所激起的系统共振临界转速;并对共用承力框架结构的隔振特性也有影响,2个转子共同激励下振动响应与转子单独激励相比,在承力框架安装边上的动载荷以及载荷传递系数均大幅度提高。   相似文献   

10.
陀螺飞轮通过挠性支撑的动量轮转子加减速及侧向摆动实现三轴控制力矩输出,飞轮转子两维侧摆伺服系统是实现三轴力矩输出功能的关键.高速转子两维侧摆运动存在强耦合,采用常规的PID控制器无法实现两通道独立输出控制力矩.给出了一种解耦控制方法,通过串联解耦矩阵实现两维摆角解耦控制,并通过实时计算解耦矩阵系数解决解耦矩阵随飞轮转子转速时变的问题.数值仿真结果验证了这种解耦控制方法的有效性.  相似文献   

11.
针对高推重比涡扇发动机中带中介轴承复杂转子系统的支点动载荷振动响应及优化设计问题,建立了转子系统支点动载荷力学模型,研究在不同转速下,不平衡量、转子弯曲变形及轮盘惯性载荷等因素对支点动载荷的影响。计算分析了双转子系统支点动载荷随转速变化规律,揭示了高速双转子系统中介支点动载荷与转子弯曲变形及轮盘惯性载荷的关系,并提出了基于转子弯曲变形弹性线斜率控制的双转子系统支点振动响应优化设计方法。结果表明,通过优化高压涡轮后轴颈结构、调整低压涡轮后支点靠近中介支点,可以有效减小中介支点动载荷的大小和不平衡量对其影响的敏感度,为具有中介支点的复杂转子系统支点振动响应优化设计提供了理论方法。   相似文献   

12.
高速柔性转子系统为控制其转子变形和多阶临界转速分布,常采用多支点支承方案,而转子-支承结构力学参数的分散性,使得转子动力特性设计成为多变量多目标非确定性优化问题。通过Lagrange法建立柔性转子运动方程,定义罚函数以定量描述多阶临界转速的分布特征,采用区间数学分析方法和遗传算法结合的方式,建立了基于临界转速分布特征优化及连接结构刚度损失控制的转子系统动力特性稳健设计方法。算例表明,通过将多阶临界转速集中于一定转速区间,并控制连接结构弯曲应变能分布比例,可有效减小转子通过多阶临界转速时的振动响应,降低转子动力特性对连接结构受力状态变化的敏感度,提高高速柔性转子系统动力特性的稳健性。   相似文献   

13.
为预判端面轴间气膜密封中密封环与外层转子之间是否产生周向相对滑动,提出了一种考虑离心膨胀效应的轴间气膜密封周向相对滑动判定方法。分析了密封环与外层转子之间产生周向相对滑动的力学机制,将密封环和外层转子离心膨胀简化为轴对称平面应力问题和轴对称平面应变问题。计算了密封环和外层转子的弹性变形刚度差异对膨胀变形及连接关系的影响,得到了密封环与外层转子产生临界滑动的工况区域。所提判定方法对工程中密封环的周向滑动问题提供了预测及指导。   相似文献   

14.
横向气动载荷作用下转子系统动力响应研究   总被引:2,自引:0,他引:2  
旋转失速会对发动机转子系统产生横向作用力.根据旋转失速时压气机内压力在时间域和空间域的变化规律建立了横向载荷的数学模型,在有限元软件MSC/NASTRAN计算平台上,利用DMAP语言开发了考虑陀螺力矩影响的复杂转子系统动力分析程序.对单、双转子发动机在横向载荷作用下转子系统的动力响应进行了数字模拟.得到了横向载荷作用下转子系统动力响应的一般规律,为发动机转子系统的设计如何考虑横向载荷的影响提供了参考.   相似文献   

15.
高速柔性转子系统非线性振动响应特征分析   总被引:3,自引:2,他引:1  
针对高速柔性转子多支点支承的结构特点及转子动力特性设计的需要,分析松动支承对转子动力特性的影响,仿真研究得到多支点支承高速柔性转子系统的非线性振动响应特征。研究结果表明:工作在多阶临界转速以上的转子系统,存在松动支承时,工作中的柔性转子可能存在周期、拟周期、混沌运动。进而研究了松动支承位置、不平衡量、松动间隙等参数对多支点支承柔性转子振动响应的影响,分析结果为多支点支承高速柔性转子系统的动力学设计提供了理论方法。   相似文献   

16.
高速转子连接结构刚度损失及振动特性   总被引:3,自引:0,他引:3  
高负荷航空发动机转子的转速和支点跨度不断加大,使得转子弯曲刚度下降,并在工作中具有一定弯曲变形。转子弯曲变形时,连接界面会存在刚度损失,需考虑转子弯曲变形对连接界面刚度特性及转子系统振动特性的影响。提出了定量描述连接界面刚度损失的力学模型,并针对非连续转子系统的动力学设计,提出了基于应变能分布优化的连接结构刚度损失抑制方法。数值仿真结果表明:转子弯曲变形下,连接界面刚度损失显著,会使转子弯曲临界转速大幅降低;通过转子应变能分布优化设计可有效降低连接界面刚度损失对转子系统振动特性的影响,对转子系统振动特性优化设计具有重要的指导意义。   相似文献   

17.
卫星的快速机动以及高精度姿态控制,越来越依赖高精度的控制力矩陀螺(CMG)力矩输出,这就需要CMG低速框架能够有效抑制扰动力矩,降低转速波动.对由高速转子动不平衡引起的扰动力矩进行了分析和建模.为了抑制该扰动力矩对低速框架转速稳定性的影响,在传统的低速框架PID双环控制系统上嵌入了迭代学习的控制算法.通过仿真实验验证该控制方法能够有效抑制扰振力矩,大幅度的提高CMG的输出力矩精度.  相似文献   

18.
控制力矩陀螺是一种用于航天器姿态机动和稳定的重要执行机构.为掌握控制力矩陀螺力学试验后的微振动特性变化,用加速度传感器测量其工作状态下的加速度响应,用多分量测力计测量其工作状态下的力和力矩响应,并进行时域统计分析和频域FFT分析.结果表明,轴承偏心和点状缺陷引起的通过频率成分及其倍频成分是加速度响应的主要成分,但皆位于300 Hz以上的高频区,如果将加速度响应转换成位移响应,则转子标称转速频率成分仍占主导,力和力矩响应结果也验证了该论断.力学试验使控制力矩陀螺微振动恶化,主要原因是静、动不平衡量变大、轴承偏心变大和轴承受损.此外,转子转速和结构模态的动力耦合也会影响微振动幅值.  相似文献   

19.
在动力调谐陀螺的装配过程中陀螺和平衡环的中心轴总是不可能完全与驱动轴轴线重合,因此存在一定的安装倾斜角.通过对转子和平衡环的受力分析及陀螺的运动状态分析,并利用理论力学知识,建立了在考虑陀螺与平衡环安装倾斜角和陀螺壳体具有加速度和角速度条件下的运动方程,得到了安装倾斜角造成的干扰力矩表达式,并进行了讨论.分析结果表明:陀螺及平衡环的安装倾斜角对动力调谐陀螺的调谐条件有影响,此干扰力矩与壳体的运动状态无关而与力矩器对转子的作用力有关.因此,在装配中应尽量做到陀螺、平衡环及驱动轴的轴线重合,以便减小对动力调谐陀螺的调谐条件的影响.   相似文献   

20.
磁悬浮敏感陀螺动力学建模与关键误差源分析   总被引:2,自引:2,他引:0  
基于转子动力学构建了针对一种新型双球形包络面转子磁悬浮敏感陀螺(MSSG)动力学模型,并对陀螺关键误差源进行了理论分析。描述了磁悬浮敏感陀螺的结构特点与角速率测量原理,并分别建立了磁悬浮转子所受电磁力与电磁力矩数学模型,分析了转子微小平移与偏转对转子力学状态的影响机理,利用ANSYS软件得出的有限元仿真结果与模型计算结果基本吻合。在此基础上,从理论上对转子非球形误差和洛伦兹力磁轴承误差2种主要误差源进行了初步分析,给出了干扰力矩解析表达式。计算表明:转子非球形和洛伦兹力磁轴承中磁场分布不均是导致测量误差产生的主要因素。模型的构建可为磁悬浮敏感陀螺的优化设计与分析提供有效理论依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号