首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 125 毫秒
1.
  总被引:2,自引:2,他引:0  
新型磁悬浮控制敏感陀螺(MSCSG)高速转子具有万向偏转特性,可输出高精度和高带宽的偏转控制力矩,用于抑制天基平台的周期性振动。MSCSG采用5自由度(DOF)全主动控制,其径向2个扭动DOF的偏转控制由洛伦兹力磁轴承(LFMB)实现。基于LFMB的基本构型,建立电磁力和电磁力矩的数学模型,并分析出气隙磁密均匀度是影响输出力矩精度和角速率测量精度的主要因素。介绍了LFMB的优化设计结构,通过有限元仿真分析,结果表明所设计LFMB通过在内外永磁体表面增加1J50导磁薄片,能够有效提高气隙磁密分布的均匀度,输出控制力矩更加精确,有利于提高控制精度;通过使用梯形永磁体提供更大的供磁面积提高气隙磁密强度以降低功耗,同时梯形永磁体在转子高速旋转时便于限位,保证稳定性。本文研究可为具有偏转特性的磁悬浮类转子陀螺的设计与分析提供有益参考。  相似文献   

2.
为了克服外部扰动突变对磁悬浮转子悬浮稳定度和磁悬浮控制敏感陀螺(MSCSG)输出力矩精度的影响,提出了一种基于自抗扰控制器(ADRC)和径向基函数(RBF)神经网络相结合的MSCSG径向偏转控制方法。阐明了ADRC参数对MSCSG控制效果的影响,通过优化设计ADRC,并将RBF神经网络和ADRC结合运用,实现对控制器参数的实时调试,从而克服外界扰动突变的影响。仿真证明所提方法相较于单ADRC控制,不仅改善了解耦控制精度,而且提高了系统对外部扰动和参数变化的响应速度和鲁棒性,可应用于MSCSG的高精度、快响应、强鲁棒控制。   相似文献   

3.
磁悬浮控制敏感陀螺转子前馈解耦内模控制   总被引:3,自引:3,他引:0  
磁悬浮控制敏感陀螺以洛伦兹力磁轴承(LFMB)为力矩器驱动转子偏转。针对磁悬浮控制敏感陀螺转子径向转动自由度间存在耦合的问题以及转子偏转高精度快响应要求,提出一种前馈解耦内模控制方法。根据洛伦兹力磁轴承的工作原理建立了转子偏转动力学模型,并设计了前馈解耦矩阵实现转子径向偏转解耦,在此基础上,采用二自由度内模控制器(2-DOF IMC)对转子进行高精度快响应偏转控制。MATLAB仿真结果表明所提出的控制方法可有效实现对陀螺转子偏转的完全解耦,且转子偏转响应时间较交叉PID算法减少57.1%,受0.1sin(2πt)°正弦信号扰动影响产生的偏转波动幅值较交叉PID算法减少76%。   相似文献   

4.
为提高磁悬浮控制敏感陀螺(MSCSG)对陀螺载体姿态的敏感精度,基于其洛伦兹力磁轴承(LFMB)的设计结构,提出了一种力矩器非圆性误差补偿方法。首先,针对一种新型双球形包络面转子MSCSG,介绍了MSCSG的结构特点与陀螺载体姿态角速度敏感原理,并分别建立了MSCSG力矩器半径误差模型、转子偏转干扰力矩模型与陀螺载体姿态角速度敏感误差模型。其次,通过实验测量了力矩器的圆度,通过MATLAB进行数据拟合得到了力矩器的非圆特性,采用勒让德多项式级数对力矩器非圆性进行了描述,并有效补偿了因力矩器非圆性误差导致的姿态角速度敏感误差。最后,对误差补偿效果进行了仿真验证,结果表明该补偿方法使陀螺载体姿态角速度敏感误差降低了83.5%。此外,本文方法还可以解决LFMB陀螺的相关共性问题。   相似文献   

5.
针对磁悬浮控制敏感陀螺(MSCSG)转子偏转通道强耦合及航天器姿态测量过程中受扰失稳问题,提出了一种磁悬浮转子偏转解耦抗干扰控制方法。分析了转子两自由度偏转耦合现象,设计了基于状态反馈的解耦控制器;建立了MSCSG在姿态测量过程中航天器的姿态运动对磁悬浮转子产生的干扰力矩模型,采用自抗扰控制器(ADRC)抑制磁悬浮转子的外部干扰;对所建立的扩展状态观测器(ESO)跟踪性和系统稳定性进行了分析,通过调节ADRC中非线性状态误差反馈控制律系数,实现了系统有界输入条件下的稳定。仿真结果表明:状态反馈解耦能够实现偏转自由度的完全解耦,ESO具有良好的跟踪性能,ADRC较传统PID控制方法具有更好的抗干扰性能。   相似文献   

6.
  总被引:2,自引:2,他引:0  
磁悬浮控制敏感陀螺(MSCSG)是一种新概念陀螺,采用洛伦兹力磁轴承为力矩器驱动转子径向偏转。针对MSCSG转子旋转过程中产生不平衡振动的问题,分析了不平衡振动产生原理,并建立了解析模型。首先,分析了MSCSG的工作原理。然后,确定了转子不平衡条件下转子几何轴与惯性轴间的几何解析关系;推导了转子不平衡振动力矩数学模型,并对不平衡扰动量的能观性进行了判定;建立了包含振动源的磁轴承-转子控制系统模型,对闭环系统的不平衡振动产生机理进行了分析,并对不同转速下不平衡振动的响应特性进行仿真,仿真结果验证了所提出模型的正确性。最后,根据转子不平衡振动的特点提出了对其进行抑制的要求,为实现MSCSG转子不平衡振动控制奠定了理论基础。  相似文献   

7.
磁悬浮控制力矩陀螺(MSCMG)转子的稳定悬浮是实现陀螺高精度大力矩输出的关键。针对影响转子稳定悬浮的转子径向偏转耦合、非线性参数摄动、动框架效应问题,建立转子的动力学模型,提出了一种基于反馈线性化的增强型内模控制方法。利用反馈线性化方法实现径向偏转运动解耦以及转子动力学模型的线性化,设计增强型内模控制对转子系统的非线性参数摄动进行补偿并有效抑制动框架效应,提升了转子系统的稳定性。MATLAB仿真结果表明:所提出的控制方法实现了转子偏转的完全解耦,与PID控制相比,所提方法可以有效抑制参数摄动对转子径向平动的影响。对于转子径向偏转,与PID交叉控制相比,所提方法可以有效抑制框架扰动,提高系统控制精度。   相似文献   

8.
磁悬浮控制敏感陀螺(MSCSG)是一种将姿态控制和姿态测量功能合二为一的新型陀螺,采用洛伦兹力磁轴承(LFMB)控制转子径向偏转。针对MSCSG 2个测量轴之间存在耦合的问题,提出了一种基于逆系统解耦的测量方法。首先,分析了MSCSG的结构组成,在此基础上建立了LFMB-转子系统动力学模型,推导了MSCSG陀螺进行两自由度姿态测量的工作原理;然后,分析了2个测量轴之间的耦合关系,进而提出采用逆系统对2个测量轴进行解耦。最后,对所提方法的有效性进行了仿真验证。仿真结果表明:在所提解耦方法作用下,2个测量轴之间的耦合效果得到了很好的抑制,测量精度得到了一定的提高。   相似文献   

9.
针对柱面洛伦兹力磁轴承(LFMB)偏角有限导致磁悬浮控制敏感陀螺(MSCSG)力矩输出持续时间短和气隙磁密均匀度低影响控制敏感精度的突出问题, 提出了一种高精度球面LFMB设计与分析方法。所设计的LFMB转子球面导磁套和定子球面绕组均与双球面陀螺转子同球心, 气隙呈球壳状, 保证转子偏转时定子绕组两侧气隙宽度不变, 相较于柱面LFMB, 转子可偏转角度由±0.6°扩大到±2°。利用等效磁路法推导了柱面与球面LFMB气隙磁密的数学解析模型, 并基于ANSYS命令流构建了柱面与球面LFMB的有限元仿真模型。仿真结果表明:在转子可偏转范围内, 沿偏转中心线, 球面LFMB最大磁密较柱面下降了34.1%;当转子不偏转时, 球面LFMB绕组截面内的磁密均匀度较柱面提高了11.6%;当转子偏转时, 球面LFMB绕组截面内的磁密均匀度较柱面提高了17.7%。所提方法为磁悬浮控制敏感陀螺控制与敏感性能的提升奠定了基础。   相似文献   

10.
磁悬浮敏感陀螺动力学建模与关键误差源分析   总被引:2,自引:2,他引:0  
基于转子动力学构建了针对一种新型双球形包络面转子磁悬浮敏感陀螺(MSSG)动力学模型,并对陀螺关键误差源进行了理论分析。描述了磁悬浮敏感陀螺的结构特点与角速率测量原理,并分别建立了磁悬浮转子所受电磁力与电磁力矩数学模型,分析了转子微小平移与偏转对转子力学状态的影响机理,利用ANSYS软件得出的有限元仿真结果与模型计算结果基本吻合。在此基础上,从理论上对转子非球形误差和洛伦兹力磁轴承误差2种主要误差源进行了初步分析,给出了干扰力矩解析表达式。计算表明:转子非球形和洛伦兹力磁轴承中磁场分布不均是导致测量误差产生的主要因素。模型的构建可为磁悬浮敏感陀螺的优化设计与分析提供有效理论依据。   相似文献   

11.
摘要: 本文提出一种新的变速控制力矩陀螺(VSCMGs)的角动量管理方法.将VSCMGs的控制力矩(CMGs)模式和飞轮模式分开求解同步输出,对CMGs模式力矩输出进行奇异值分解,只有CMGs模式接近奇异的时候,在奇异方向上的指令力矩才会分配一部分给RWs模式,从而在保证VSCMGs输出精度的情况下尽量充分的利用VSCMGs的执行能力.同时角动量管理算法中还引入零运动来实现转子轮速平衡以及框架构型避奇异,并且考虑了框架角速度死区非线性以及忽略项的补偿问题.仿真结果表明,所设计的操纵律在航天器大角度快速姿态机动时,可以实现高精度的大力矩输出.  相似文献   

12.
针对柱面磁轴承偏转时干扰力矩较大问题,本文提出一种径向球面纯电磁磁轴承设计方法。在本设计中,当磁轴承产生偏转或偏移时,电磁力会指向转子球心,从而降低定子磁极对转子产生的干扰力矩,提高磁轴承的控制精度。首先,阐述球面磁轴承的工作原理并建立数学模型,运用等效磁路理论方法和有限元数值方法分析其电流刚度和位移刚度,2种方法的计算结果基本吻合,表明球面磁轴承的有限元分析模型是合理的。接着,运用有限元方法分析球面磁轴承和柱面磁轴承产生偏转时的干扰力矩,结果表明当转子达到最大偏转角0.3°时,球面磁轴承的干扰力矩是柱面磁轴承的干扰力矩的1.8%,表明球面磁轴承相对于柱面磁轴承在抗干扰力矩能力方面有很大的提高。最后,进一步分析球面磁轴承产生X方向或Z方向偏移时的干扰力矩,计算结果与偏转时干扰力矩的量级相当。综上所述,本文提出的径向球面纯电磁磁轴承有低干扰力矩的优点,可用于航天航空工程中惯性执行机构的高精度控制和角速率检测。  相似文献   

13.
为研究三自由度比力作用下半球型动压气浮轴承气膜变形对平台惯导中三浮陀螺仪输出的影响,提出了一种通过求解Reynolds方程来计算陀螺仪静态误差的数学模型。首先,在考虑气体稀薄效应条件下,针对三浮陀螺仪中的半球型动压气浮轴承给出对应的Reynolds润滑方程;然后,用有限差分法求解气膜压力场,并利用得到的载荷与转子位移计算陀螺仪静态误差;最终,通过回归分析,得到半球型动压气浮轴承陀螺仪的静态误差模型。为简化回归分析的过程,引入干扰力矩与比力的周向夹角和径向干扰力矩作为中间参数,将三元回归分析问题转化为二元回归分析问题。计算结果表明:径向干扰力矩随着轴向比力的增大而增大,随着径向比力的增大呈现先增大后减小的趋势;干扰力矩在周向上超前比力1.35~1.55 rad。本文静态误差模型可预测300 m/s2以内任意方向比力作用下由转子位移所引起的陀螺仪静态误差。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号